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Abstract

The existing semisupervised techniques based on progressive transductive support
vector machine (PTSVM) iteratively select transductive samples that are closest to
the SVM margin bounds. This may result in selecting wrong patterns (i.e., patterns
that when included in the semisupervised learning can be associated with a wrong
label) as transductive samples, especially when poor initial training sets are avail-
able or when available training samples are biased. To mitigate this problem, the
proposed approach considers the distance from SVM margin bounds, the proper-
ties of the k-nearest neighbors approach, and the cluster assumption in the kernel
space. To assess the effectiveness of the proposed method, we compared it with other
PTSVM methods existing in the literature by using a toy data set and six real data
sets. Experimental results confirmed the effectiveness of the proposed technique.

Key words: Cluster assumption, k-nearest neighbors, semisupervised
classification, support vector machine, transductive inference.

1 Introduction

Supervised learning needs only labeled data for training. The classification
results rely on the quantity and quality of these labeled samples. However
the generation of proper labeled samples is often difficult, expensive and time
consuming, as this requires the effort of experienced human annotators. On
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the other hand, unlabeled data are relatively easy to collect, although they
have no use in supervised learning. Two popular machine learning approaches
for dealing with this problem are active learning and semisupervised learning.
Active learning expands the original training set according to an interactive
process that involves a supervisor who can assign the correct label to unknown
data points [1,2]. The goal of the active learner is to select the most informative
samples so as to accurately learn from the fewest such additionally labeled
data. In contrast, semisupervised learning exploits unlabeled data, together
with the labeled data, to build better classifiers [3]. As a result, under proper
assumptions, it requires less human effort for labeling. Thus, it becomes of
great interest both in theory and in practice.

The transductive support vector machine (TSVM) is a semisupervised ver-
sion of SVM [4]. During the training phase, it gradually (iterative process)
searches a reliable separating hyperplane in the kernel space by taking into
account both labeled and unlabeled samples. The unlabeled data can be used
as an additional source of information about margin for SVM. In transduc-
tive learning the goal is to find a labeling of the unlabeled data, so that a
linear boundary has the maximum margin on both the original labeled data
and the (now labeled) unlabeled data (defined here as transductive data for
convenience). This task can improve the generalization performance of SVMs,
especially when poor training sets are available or when the available training
samples are inadequate [5].

In the literature many semisupervised techniques based on TSVM exist for
pattern classification [5–10]. All these methods try to find out a decision hy-
perplane passing through low density region of the kernel space. A good review
of semisupervised approaches can be found in [11]. In [5], Joachims solved the
quadratic optimization problem for the implementation of the TSVM with an
application to text classification. This algorithm is effective when the ratio
between the unlabeled positive and negative samples is known at the begin-
ning of transductive learning. Chapelle and Zien [6] proposed a method that
optimizes the transductive SVM objective function by using gradient descent
technique to find out the decision boundary in low density regions of the kernel
space. Sindhwani and Keerthi [7] proposed a fast algorithm for linear TSVM,
suitable for large scale text applications. In [8], an additional criterion is in-
cluded with the standard objective function of the TSVM and then a genetic
algorithm is used for optimizing this objective function. In [9], a progressive
TSVM algorithm was proposed that iteratively selects a positive and a nega-
tive sample as transductive samples from the available unlabeled samples that
are inside the SVM decision margin and have minimum distance from posi-
tive margin and negative margin, respectively. The method also uses dynamic
adjustment to reduce the miss labeling of selected transductive samples. In
[10], Bruzzone et. al. modify the algorithm presented in [9] to select a batch
of positive and negative patterns as transductive samples from the available
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unlabeled patterns at each iteration of the transductive learning process.

The progressive TSVM (PTSVM) algorithms existing in the literature [9,10]
iteratively select the most certain patterns as transductive samples from the
available unlabeled patterns that are inside the SVM margin bounds. The
certainty of a sample is measured by considering only its distance from the
nearest SVM margin bound. This may result in a high probability of selecting
wrong patterns as transductive samples (the actual labels of the patterns are
different from the labels automatically assigned to them), especially when the
initial decision hyperplane is poor i.e., passes through a wrong region of the
kernel space. Thus, the final classification accuracy may be degraded. In this
paper we propose a novel semisupervised technique based on PTSVM learn-
ing that mitigates the above-mentioned limitation. The proposed technique
not only uses the distance from the nearest SVM margin bound but it also
exploits the properties of k-nearest neighbors (k-nn) approach and the clus-
ter assumption to selects the most certain samples as transductive samples at
each iteration of the learning process.

The rest of this paper is organized as follows. The concept of inductive and
transductive SVM learning is presented in Section 2. Section 3 describes the
limitations of the existing PTSVM based approaches. The proposed technique
is presented in Section 4. Section 5 provides the detailed description of the data
sets used in the experiment and the results obtained on the considered data
sets. Finally, Section 6 draws the conclusion of this work.

2 Support vector machine classifier

Before presenting the proposed semisupervised technique based on PTSVM
learning, we briefly recall the main concepts associated with both the inductive
SVM and transductive SVM learning. The reader may refer to [4,12] for more
details on the SVM approach.

2.1 Inductive SVM learning

Let X = {(x1, ..., xn)|xi ∈ ℜd} be the set of n available training samples and
Y = {(y1, ..., yn)|yi ∈ {−1,+1}} be the set of associated labels. The standard
SVM learning also called inductive SVM (ISVM) learning, tries to separate
the data in the input space with the available training data by defining a
hyperplane:
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f(x) : wx+ b = 0 (1)

such that the distance between the closest vectors to the hyperplane is maxi-
mum. The maximal geometrical margin generated by the hyperplane is

φ(w) =
2

∥ w ∥
(2)

In the case of linearly non-separable training data, the objective function of the
ISVM learning is to find out a hyperplane by solving the following quadratic
optimization problem

max
α


n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi,xj)


subject to:

n∑
i=1

yiαi = 0

0 ≤ αi ≤ C (3)

where ξi and αi represents slack variables and Lagrangian multipliers, respec-
tively. K(., .) is a kernel function that implicitly models the classification prob-
lem into a higher dimensional space where linear separation between classes
can be approximated, and C is a regularization parameter that allows one to
control the penalty assigned to training errors [2].

2.2 Transductive SVM learning

In the above framework, to address the issue of the available biased/poor
training set, a transductive SVM approach has been proposed by involving
unlabeled samples into the training phase [4]. Let X∗ = {(x∗1, ..., x∗m)|xi ∈ ℜd}
be the set of m unlabeled samples and Y ∗ = {(y∗1, ..., y∗m)|yi ∈ {−1,+1}} be
the corresponding predicted labels. At the initial iteration, the standard ISVM
is used to obtain a separating hyperplane using the training set X only. Then,
depending on the distance from this hyperplane labels are assigned to the
unlabeled samples which are thus called semilabeled data. After that, accord-
ing to a defined criterion transductive samples chosen from the semilabeled
patterns are included into the original training set X. The resulting training
set is used at the following iterations to find a more reliable discriminant hy-
perplane. This hyperplane separates (X, Y ) and (X∗, Y ∗) with the maximal
margin and is derived as follows:

4



φ(w) = min
w,ξi,ξ∗u

{
1

2
∥ w ∥2 + C

n∑
i=1

ξi + C∗
d∑
i=1

ξ∗u

}
subject to: ∀ni=1 : yi(wxi + b) ≥ 1− ξi, ξi > 0

∀mi=1 : y
∗
i (wxi + b) ≥ 1− ξ∗u, ξ

∗
u > 0 (4)

In order to handle the nonseparable training and transductive data, similarly
to the ISVMs, the slack variables ξi and ξ

∗
u and the associated penalty values

C and C∗ of both the training and transductive samples are introduced. In
the learning process of the TSVMs, the purpose of C and C∗ is to control
the number of misclassified samples that belong to the original training set
and to the unlabeled set, respectively. On increasing their values, the penalty
associated with the errors on the training and transductive samples increases.
In other words, the larger the regularization parameter are, the higher is the
influence of the associated samples on the selection of the discriminant hy-
perplane. d(d ≤ m) is the number of transductive samples chosen at each
iteration of transductive learning.

3 Limitations of the existing methods

The semisupervised techniques based on PTSVM existing in the literature
[9,10], iteratively select transductive samples from semilabeled patterns that
are inside and closest to the SVM margin bounds. This results in a high prob-
ability of selecting wrong patterns as transductive samples when the initial
SVM decision hyperplane is very poor i.e., in cases where it passes through
wrong region of the kernel space. Fig. 1 (a) depicts a situation where one
SVM margin bound is near to the actual decision hyperplane (i.e., it passes
through low density region of the kernel feature space) and the other one is far
from it. Now, if we apply the conventional PTSVM methods to select trans-
ductive samples, they will select some semilabeled patterns as transductive
samples that also shift the margin bound which passes through low density
region towards wrong direction. As a result a poor decision hyperplane will
be generated. The main reason is that these algorithms do not impose any
explicit constraint to the transductive sample selection process so that the
margin bound which passes through high density region can only be shifted
towards low density region. Fig. 1 (b) depicts another extreme situation where
both positive and negative margin bounds pass through both the classes. Also
in this case the conventional PTSVM methods may fail to select the appro-
priate transductive samples. As a result, the classification performance can be
degraded. In this paper we propose a novel semisupervised technique based
on PTSVM learning that addresses both the above-mentioned issues during
the selection of trasductive samples at each iteration of the learning process.
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(a)

(b)

Fig. 1. Patterns belonging to class ”-1” and ”+1” are shown as white squares and
circles, respectively. Initial labeled samples for class ”-1” and ”+1” are shown as
black squares and circles, respectively. The separation hyperplane is shown as a
dashed line, whereas the solid lines define the margin. The dashed squares and circles
highlight the transductive patterns selected by the 1st iteration of conventional
progressive TSVM methods labeled as ”-1” and ”+1”, respectively (a) when one
decision margin is near to the actual decision hyperplane and the other one is far
from it; (b) when both positive and negative decision margins pass through the
feature space of both the classes.

4 Proposed TSVM method

As regards the selection of transductive patterns, two points should be con-
sidered: 1) choose the informative samples, and 2) select the samples with an
expected accurate labeling. In the proposed work the informative samples are
selected by considering only the unlabeled patterns inside the SVM margin
bounds. To select the proper transductive samples (with expected accurate
labeling), in this paper we not only considered the distance from the SVM
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margin bounds, yet we also exploits k-nn technique and the cluster assump-
tion. The details of the proposed transductive samples selection procedure is
given below.

Let us consider at the beginning only few training samplesX = {(x1, ..., xn)|xi ∈
ℜd}; with their associated labels Y = {(y1, ..., yn)|yi ∈ (−1,+1)}. Let us as-
sume that a large number of unlabeled samples X∗ = {(x∗1, ..., x∗m)|xi ∈ ℜd}
are available. First, we train the SVM classifier using the training set X only
(inductive learning) to find out the decision hyperplane f(x). Then, depend-
ing on the distance from this hyperplane, pseudo labels are assigned to all
the unlabeled samples, thus obtaining semilabeled samples. Let N be an inte-
ger variable. We fix the value of N = min{N+

SV , N
−
SV }, where N+

SV and N−
SV

represent the number of positive and negative margin support vectors, respec-
tively, obtained after the first inductive learning iteration. After that, the set
ψ+ of positive candidate transductive samples is initialized by choosing N
semilabeled samples from X∗ that lie inside the margin bound and are closest
to the positive margin. Similarly the negative candidate set ψ− is initialized
by choosing N semilabeled samples from X∗ that lie inside the margin bound
and are closest to the negative margin. If we select all the semilabeled sam-
ples in ψ+ and ψ− as transductive samples as in the existing techniques then
the problem shown in Fig. 1 (a) may arises (i.e., the decision hyperplane may
shift towards wrong direction). To mitigate this kind of problem, here first we
compute the average distance d+ and d− of all samples in ψ+ and ψ− from
the SVM decision hyperplane as follows:

d+ =

∑
xi∈ψ+ f(xi)

N
(5)

d− =

∑
xi∈ψ− |f(xi)|

N
(6)

Then a threshold value t is obtained as t = min{d+, d−}. After finding the
value of threshold t we update the positive candidate set ψ+ = {xi|xi ∈
ψ+; f(xi) > t} and negative candidate set ψ− = {xi|xi ∈ ψ−; |f(xi)| > t}.
This help us to incorporate cluster assumption criterion to choose appropriate
transductive samples.

Due to the second problem shown in Fig. 1(b), there may be some semilabeled
patterns that are closest to the positive (or negative) margin but belongs to ψ−

(or ψ+). To select appropriate transductive samples from ψ±, in this work we
propose to apply a k-nn technique in the SVM kernel space. For each pattern
x∗i ∈ ψ±, we find out the k-nearest labeled samples from X and then assign a
class label to x∗i according to k-nearest neighbor rule. After that according to
the k-nn rule, the patterns from ψ+ and ψ− selected as transductive patterns
those have positive and negative class label, respectively. To compute the
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distance between a pattern x∗i ∈ ψ± and xj ∈ X in the kernel space we
use the same kernel function as used in the SVM classifier. Accordingly we
try to select transductive samples that are most certain. The certainty of
each unlabeled samples is measured by applying cluster assumption criterion
and by exploiting the properties of the SVM and the k-nn techniques. Note
that compared to the existing methods, the proposed technique spends some
additional time to find out the k-nearest neighbors of each sample in ψ±. Since
a limited number of samples are in ψ±, this does not take significant additional
time.

Let ψt be the set of transductive samples. Initially the set is empty. After
selecting few semilabeled samples as transductive samples we add them into
the transductive set ψt and retrain the SVM classifier using the available
labeled set X and ψt. The process is iterated until some patterns are inside
the margin bound or a threshold value on the number of patterns in the margin
is reached. If the label of a transductive pattern at iteration itr+1 is different
from the one at iteration itr, such pattern is removed from the transductive
set and reassigned to the unlabeled set. The regularization parameter for the
transductive patterns C∗ is increased in a linear way, depending on the value
of the regularization parameter for the labeled patterns C and a parameter g.
In our algorithm, the initial value of C∗ is defined as C∗ = g×C, where g is a
weight parameter computed as g = 1

l
× itr (l is the growth rate and is a user

defined parameter). In the first l iterations, the value of g increases linearly
and reach value equal to 1 at lth iteration. After that the value of g does not
change by increasing the iteration number.

It is worth noting that to solve multiclass problem we adopt one-against-all
binary SVM architecture. Thus, if there are n classes then n TSVM are defined.
Each TSVM solves a binary classification problem defined by one information
class against all the others. The details of the proposed technique for solving
multiclass problem is shown in algorithm 1.
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Algorithm 1: Proposed transductive learning technique

Let X and X∗ denote the available labeled and unlabeled samples and n rep-
resent the number of classes.
For s=1 to n
Step 1: Set itr = 0 and transductive candidate set ψt = ϕ.
Repeat

Step 2: Train the sth OAA binary SVM with the available labeled
samples X to generate the decision function fs(.).
Step 3: Fix N = min(N+

SV , N
−
SV ).

Step 4: Define the positive candidate set ψ+ and negative candidate set
ψ− by selecting N samples from X∗ that lies inside the margin bound
and are closest to the positive and negative margins, respectively.
Step 5: Compute average distances d± and threshold t as follows:

d+ =

∑
xi∈ψ+ f(xi)

N , d− =

∑
xi∈ψ− |f(xi)|)

N and t = min{d+, d−}.
Step 6: Update
ψ+ = {x∗i | x∗i ∈ ψ+, |fs(x∗i )| ≥ t}; ψ− = {x∗i | x∗i ∈ ψ−, |fs(x∗i )| ≥ t}
Step 7: For each x∗i ∈ ψ±, compute the distance to all the samples
xj ∈ X in SVM kernel space. Then according to k-nearest neighbor
rule assign either positive or negative class label to each x∗i ∈ ψ±.
Step 8: Update
ψ+ = {x∗i | x∗i ∈ ψ+ and positive label assigned by k − nn rule};
ψ− = {x∗i | x∗i ∈ ψ− and negative label assigned by k − nn rule}
Step 9: Update ψt = {ψ+ ∪ ψ−} and X∗ = X∗ − ψt
Step 10: itr = itr + 1;
Step 11: If itr ≤ l then update g = 1

l × itr and C∗ = C × g.
Step 12: Train sth binary SVM with updated labeled set (X ∪ ψt).
Step 13: For a sample x∗i ∈ ψt, if sign of f itrs (x∗i ) and f itr−1

s (x∗i ) is
different then update ψt = ψt − x∗i and X∗ = X∗ ∪ x∗i .

Until x∗i ∈ X∗ is found inside the margin bound or a threshold value on the
number of patterns in the margin is reached.

End For

5 Experimental results

5.1 Description of data sets

In order to assess the effectiveness of the proposed technique, seven data sets
with significantly different properties were used in the experiment. The first
one is a toy data set which is made up of four linearly separable classes as
shown in Fig. 2. The second one is a more complicated vowel data set [13].
The rest five data sets (Iris, Diabetes, Letter Recognition, Ionosphere and
ISOLET) are taken from UCI machine learning repository among those that

9



are widely used as benchmark for pattern classification tasks[14]. For all data
sets, first only few available labeled samples were randomly selected as initial
training set X, and the rest were stored in the unlabeled pool X∗. Table 1
shows the details of all the above mentioned data sets.

Fig. 2. Linearly separable toy data set.

Table 1
Number of patterns, features and classes for the seven different data sets

Data sets Patterns Features Classes

Toy 1000 2 4

Vowel 871 3 6

Iris 150 4 3

Diabetes 768 8 2

Letter Recognition 20000 16 26

Ionosphere 351 34 2

ISOLET 6238 617 26

5.2 Design of experiments

In our experiments we adopted an SVM classifier with RBF kernel. The SVM
parameters {σ,C} were derived by applying the cross-validation technique
[15]. The cross-validation procedure aims at selecting the best values for the
parameters of the initial SVM. The same RBF kernel function is also used
to implement the kernel k-nn technique. The value of k for kernel k-nn is
also automatically computed using cross-validation technique. To gradually
consider the influence of transductive samples for defining the actual decision
hyperplane, the initial value of the regularization parameter for the selected
transductive patterns C∗ should be small since at initial stage of learning the
SVM decision hyperplane is poorly defined. At subsequent iterations, since
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labeling confidence increases, the value of C∗ will also increase. This is done
by defining the value of the growth rate parameter l. In our experiments, the
value of growth rate l is fixed to 10 for all the considered data sets.

To assess the effectiveness of the proposed technique we compared it with
two other existing methods: i) the progressive transductive SVM (PTSVM)
method [9]; and ii) the modified progressive transductive SVM (MPTSVM)
method [10]. In PTSVM, at each iteration of transductive learning, a positive
and a negative semilabeled pattern are selected as transductive samples from
the available samples that are inside the SVM margin bound and are closest
to the positive and negative margins, respectively. In MPTSVM, at each it-
eration, a batch of positive and negative semilabeled patterns are selected as
transductive samples using the same criterion as used in PTSVM. The batch
size is determined automatically depending on the number of available positive
and negative support vectors at a particular iteration of the learning process.

The multiclass SVM with the standard OAA architecture has been manually
implemented by using the LIBSVM library (for Matlab interface) [16]. All the
algorithms presented in this paper have been implemented in Matlab.

5.3 Results

In order to understand the effectiveness of the proposed technique, in the first
experiment we compared the performance of the proposed method with the
existing PTSVM and MPTSVM methods. For all the four data sets, initially
only few labeled samples were considered in the training set. The transductive
learning process was repeated for 10 trials with 10 different initial training sets
(generated randomly) to reduce the random effect on the results. Table 2 shows
the average overall classification accuracies and standard deviations provided
by different methods starting with different numbers of initial labeled samples
for the toy, the iris, the diabetes and the vowel data sets. From the table one
can see that for the toy data set, the proposed technique yielded a classifica-
tion accuracy of 100% starting with only 8 initial labeled samples, whereas
both the PTSVM (95.90%) and the MPTSVM (97.10%) techniques failed to
achieve the same accuracy under the same conditions. For the vowel, the iris,
the diabetes and the letter recognition data sets, the proposed technique start-
ing with different numbers of initial labeled samples always resulted in higher
classification accuracy than the other techniques. For example, considering the
iris data set with 18 initial labeled samples, the proposed technique resulted
in a 96.47% classification accuracy, whereas the best accuracy obtained by the
existing literature methods is 94.87%. Similarly, for the vowel, the diabetes
and the letter recognition data sets, one can see that the proposed technique
always achieved at least 2% higher classification accuracies compared to those
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obtained by the literature methods under the same conditions. Moreover, from
Table 2 one can see that the standard deviation of the accuracy provided by the
proposed approach with respect to the different trials is always smaller than
those of the other techniques. This confirms the better stability of the pro-
posed method versus the choice of initial training samples. Since the proposed
technique selects the transductive samples not only considering the distance
from the SVM margin bounds, yet it also exploits the properties of the k-nn
technique and the cluster assumption, it reduces the probability of selecting
wrong transductive samples during the learning. Thus, it is more robust to
solve classification tasks. For the ionosphere and the ISOLET data sets, the
proposed technique only slightly improved the accuracy as compared to the
literature techniques. This may be due to the fact that the cluster assump-
tion criterion incorporated by the proposed technique may be less effective for
these high dimensional data sets.

Table 2
Average overall classification accuracy (acc) and its standard deviation (std) ob-
tained on ten runs starting with different number of initial labeled samples (|X|)

Data sets |X| Proposed PTSVM MPTSVM

acc std acc std acc std

Toy 8 100 0.00 95.90 3.68 97.10 1.83

Vowel 42 76.04 2.42 74.06 2.66 74.08 3.16

56 77.93 2.14 75.92 2.66 75.98 2.85

Iris 9 95.12 3.83 93.47 5.21 93.53 4.69

18 96.47 3.41 94.87 4.15 94.87 4.27

Diabetes 11 69.42 3.62 65.47 5.94 66.99 5.44

22 70.68 3.87 67.59 7.23 67.50 6.86

Letter Recognition 280 68.93 2.79 65.81 2.58 66.32 2.17

561 77.32 1.21 71.74 1.45 73.37 1.82

Ionosphere 54 89.56 2.46 88.80 3.30 89.46 2.67

69 92.02 1.51 91.33 1.38 91.34 1.18

ISOLET 208 82.21 2.50 81.53 2.73 81.72 2.28

338 87.04 1.52 86.27 1.78 86.48 1.67

The second set of experiment was devoted to analyze the performance of the
proposed technique by varying the value of the regularization parameter for
transductive patterns C∗. As explained in Section 4, the initial and incre-
mented (after completion of an iteration) value of C∗ are computed based on
the value of the user defined growth rate parameter l. Thus, in this experiment
for all considered data sets l was varied in the range 5, 10, 15 and 20. Table
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3 shows the classification accuracies obtained by the proposed technique for
different values of l. From the table one can see that the classification accu-
racy is not significantly affected. Thus, the value of C∗ can be computed by
assigning the value of l in wide range.

Table 3
Average classification accuracy provided by the proposed approach considering dif-
ferent values of the user defined parameter l used to compute the value of C∗.

Data |X| Proposed technique

sets l=5 l=10 l=15 l=20

Toy 8 100 100 100 100

Vowel 56 77.71 77.93 78.12 77.83

Iris 18 96.42 96.47 96.58 96.51

Diabetes 22 70.75 70.68 70.62 70.57

Letter Recognition 561 77.27 77.32 77.05 76.96

Ionosphere 69 91.81 92.02 92.16 92.08

ISOLET 338 86.87 87.04 87.13 86.95

6 Discussion and conclusion

In this paper we have proposed a novel semisupervised technique based on
PTSVM for solving pattern classification tasks, which overcomes the limita-
tions of the existing PTSVM based methods. The existing techniques select
the transductive samples by exploiting only the properties of the SVM classi-
fier. They do not take adequately into account the low-density region of the
feature space as well as the possible poor initial training set in the definition
of the criterion for selecting transductive samples. As a result, the probabil-
ity of selecting wrong transductive patterns (the actual labels of the patterns
are different from the automatically assigned labels) becomes high and the
classification performance may result degraded. To overcome this problem,
the proposed technique not only exploits the properties of the SVM classifier,
yet it also exploits a k-nn technique and the cluster assumption for selecting
accurate transductive samples.

To empirically asses the effectiveness of the proposed method we compared it
with other PTSVM based approaches existing in the literature using a toy data
set and six real data sets. By this comparison we observed that the proposed
method provided better accuracy compared to the existing techniques on the
considered data sets.
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Compared to the existing methods the proposed technique needs some addi-
tional time for using the k-nn technique. However, since the proposed tech-
nique computes the k-nearest neighbors of few samples this does not take
significant additional time.
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