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ABSTRACT

This paper presents a novel multitemporal spectral unmixvi§U) approachto address the
challenging multiple-change detection problem ipi-temporal hyperspectralimages. Differently
from the stateof-the-art methods thatre mainly designedat a pixel level, the proposed technique
investigateshe spectratemporal variations at a subpixel level. T¢twnsideredChange Detection
(CD) problemis analyzedn a multitemporal domain, wherel@temporalspectralmixture model is
defined to analyzethe spectral compositiowithin a pixel. Distinct multitemporal endmembers
(MT-EMs) are etracted according tonaautomaticand unsupervisetechnique Then achange
analysisstrategyis designedto distinguishthe change and achangeMT-EMs. An endmember
grouping scheme is applied the changed MIEMs todetect the unique change classes. Findily,
considered multiplkehangedetectionproblemis solved byanalyzingthe abundances of the change
and no-change clags and their contribuion to each pixel. The proposed approach has been
validated on both simulated and real multitemporal hyperspectraldatasetspresentingmultiple

changs. Experimental results confirmed tleéfectivenes®f the proposed method.
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l. INTRODUCTION
The new generation of hyperspect(@&sS) satellite sensors can acquire images having a very high
spectral resolutione(g, 5nm-10nm) over a wide wavelength spectrueng( 400nm2500nm).Thus
for each pixela nearcontinuous spectrasignature can be obtained over the whole range of
wavelengthsThis important property makes tlbservation andlentification of more detailed and
specific land-cover materials from satellite imagegossible Traditional changeletection (CD)
techniques are mainigevelopedor multispectral(MS) imagesandaim at automatically deteaig
theland-cover changeeccurred between two (or more) imagesjuiredoverthe samegeographical
area at different observation timgg. However, due to the limited spectraisolutionof the MS
images,usuallyonly strong changethat result ina significantchange of theixel spectral signatures
are detedd With the increasing availability ofmultitemporal HS images, change detection in
hyperspectral imagefCD-HS) becoms a very interesting and valuable topigyhich makes it
possible a very detailed monitoring of lacover dynamics.
By taking advantge of the fine spectralinformation inHS images,subtlechangeqwhich are not
visible when employing MS imagesyssociated to the larabver transitionsare expected to be
detectedThus it is important to develop effective CD techniqthest fully exploitthe fine spectral
variationsin HS imagedo address newpplications However,due to the intrinsic properties of HS
data, his task ishighly challenging[2]. Examples of sucpropertiesarethe highdimensionality of
the feature space, the informati@uundancythenoiseandthe presence omanypossiblechangs.
Only few literaturepaperscan be foundocusing m the topic oimultitemporalCD-HS and even less
that dealwith the detection oMmultiple changes. In general, depending on #vailability of the

referencesamples, twanaingroups oftechniquesxist to address the multiptdhange detection task



[2]: supervised and unsupervis&de focus on the unsupervised CD methods that do not require any
reference data or prior knowledge, thus being naiteactiveand important in the real CES
applicationsIn [3], anunsupervisedultivariate AlterationDetection (MAD) techniquavasused to
highlight the multiple changmformationbased on th€anonical Correlation Analysi&CA) thus
to detectthe seasonalegetationchanges irmultitemporal HS imagesAn improvedversionof this
technique named tferative ReweightedMAD (IR-MAD), was proposed if4]. IR-MAD provides
more reliable output components and bettephasizethe deteced changesHowever, it requires a
strong interaction with the erngbers to select the most informativemponentdhat representhe
specific changesf interest which isalwaystime consuming Therefore, it iscomplex to uset for
detecting allpossiblechange classesspeciallywhenthe number of changes large. Recentlythe
authorsinvestigatedhe CDHS problem from theoint of view ofspectral signaturehangesand
analyzedthe hierarchical nature of change$2]. Based on thisanalysis a sequential change
representation, discovery and detection approach was propo$BH It allows users tadentify
kinds of change and toimplementan interactive change identificatiorschemeaccording to a
sequence of -D change representatiatattergramsA hierarchicalclusteringapproachto detect
different levels of spectral changes followingystematidop-down structurewas proposed if2]. In
the experiments dih techniques outperformed the statédhe-art methods in addressing the
challengingmultiple-changedetectionproblemin HS images

Despite the usefulness of tte#orementionedapproachesthey are all developed based othe
assumption tha¢achpixel in the considered imagesntairs only one kind of lanecover material
(purepixel theory). Accordingly, the finalCD resultassociates pixel only witha single specific

kind of landcover transition {.e., vegetation to water, soil to building, etdjowever given the



geometricalesolution ofHS images, mixed pixes area commormphenomenothatoccursin most of
the casesThis phenomenon consgsin a mixture of the light scattering ofare than one distinct
substancéocated in thearea on the grouncbvered by ongixel [6], [7], [8]. This mixtureis usually
causeckeitherby the limited spatial resolution of the sensors thatudesdifferent targetsn a single
pixel or by the combination of the distinct materials intbcaogeneousixture [6], [7]. To solve
this mixture problem,spectral unmixingechniquesvere developedaiming to detect the materials
(termed endmembeljsin the mixed pixels and to estimate their correspondiagtions (termed
abundances Thus the hyperspectral unmixingastuallyan inverseproblem Despite single image
unmixing has beewidely investigated in the literatufé], [7], [8], [9], multitemporal unmixing has
not been consideredxtensively Landcover materialtransitionswithin a single pixelare almost
ignoredin theavailableCD methodsThe impact is a higher number@D errors due to the spectral
sensitivity of the HS dataand to tke poor investigation of the spixel levelspectralariationsthat is
typical of stateof-the-art pixel-level CD methodsTherefore, itis necessary to consider the spectral
mixture nature in th€D-HS studesand to develop advanceéechniquedor detectingand analyzing
the sulpixel level spectral changes.

Multitemporal unmixinghasbeenonly partially investigatedo addresthe endmembersariability
issuein orderto increase theepresentativeness the extracte&ndmembes; thus improvingeither
land-cover classification ospecificchangemonitoring(e.g, cropland,nvasive speciedorest, etc.)
[10], [11], [12]. In the context of unmixingnethods have been propoded change detectiothat
rely on postunmixing comparisoror posterior probabilitycomparison Theyhave thecapabilityto
investigate subpixel change®u et al. [13] proposed a linear mixture model for analyzing

endmembers and abundances estim@ited eachsingletime imageto address binary CD problem



Lu et al. developed £€D methodbased on the linear spectral mixture analysis (LSMA) of the
multitemporalLandsafTM images and the analysis of thtaineddifferencingfraction image$14].
Recently, a sytixel level CD approachwas developedto investigate themultiple composition
evidencewithin pixels, thus toncreasdhebinary CDaccuracy[15]. Chen et aldesignech posteior
probability comparisorby using change vector analysis to reduceettfiect of thecumulatve error
in postclassification comparison(PCC) [16]. However these methodsare all designedin a
supervisedrameworkrelying on theavailability of training samples None of themaddresssthe
challenging multiple-change detection problem in multitempotd§ images from the spectral
unmixingpoint of view with unsupervisedechniques.

In this paper, wgroposea novel CD approachthat is suitableand effective for detectingmultiple
changeclassesn HS imagesthroughthe analysis omultitemporalspectral mixture To thisend a
novel multitemporal spectral unmixing (MSU) techniqueis proposed. The proposdédchnique
considers thespectral signatures in theultitemporal domain(i.e.,, stacked feature spa¢egnd
identifies multitemporal endmembef$1T-EMs) associatedo the chang and no-changedclasses.
To overcomechdlenging issues likethe high spectralvariability and the insensitity to the small
size changeclassesa patchschemes adopted Distinct MT-EMs are extractedfrom eachpatchof
the imagest local level Thentheir abundanceare estimated ajlobal level. Changeanalysisand
endmembegroupingare conductedo find uniquechange classethusgenerang the finalCD map
based on thabundanceombination The proposed MSU approach is validatedboth simulated
and real bitemporalHS images. The experimentadsultsconfirm the effectiveness of the proposed
methodin performingmultiple-changedetection

The rest of the paper is organized as follows. SectipreBentghe defined multitemporal unmirg



model and theonsideredmultiple-change detection problem HS images, pointing out the main
propertiesof the multitemporal domain and their role in CD The proposed MSUmethod is
illustrated in Section Il Section IV describesthe HS datasets and analyzes and discusses the

experimental results. Section V draws tieaclusionof this work.

I. MULTITEMPORAL SPECTRAL UNMIXING IN CHANGE DETECTION ON
HYPERSPECTRAL IMAGES
Let X; and X, be two ceregisteredHS imageshaving a size oflixJ acquired over the same
geographical area at timésandt,, respectivelyLet x(i, j) andX(i, j) be the pixed with spatial
position(i,j) (1 ¢i ¢ 1, 1¢ j ¢ J) in X; and Xy, respectivelyB is the number of spectral channels of
the considered imagedJnder the pure spectrum assumptipixels are spatialllhomogenousand
thus contain only one lantbver material at each datee( pixel level CD inFig.l). Thus only
change or n@whange caseay occuraccording toa crispdecisionstrategy However, ly analyzing
the bi-temporal CD problem from the perspective mixed specta assumptiona pixel maybe
associatedvith severalpossiblesituationsof classmixturesand transitios (seeFig.1), thusmore
complexsituations mayccur The spectral mixture casccuronly on asingledateimage {.e., X; or
X32) or on both of themleadingto the following fourpossiblesituations(seeFig.1, sulpixel level
CD): 1) the pixel ispure inboth X; andXy; 2) the pixelis pure inX1, but mixed inXy; 3) the pixelis
mixed in Xy, but pure inX3; and4) the pixel ismixed inboth X; andX,. Thefinal crispdecisionis
made byassigningthe change or no-changelabel dgendng on the majorityof the material
compositionand itstemporalbehavior(seeFig.l). If the majorityis associate to differentmaterias

at thetwo dates the pixel tends tde changé, whereas it tends to hexchange when majority is



associate to the samematerialin two imagesThus an ef#ctive investigatiorat the sulpixel level
may point out potentialspectralvariationswithin a pixelthat are usually naletectableat the pixel
level. This helps to better understand trspectral mixturgphenomenorand its effecton CD. The

proposedhange formulation and representati®hased on thispectral mixturenalysis
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Fig.1 Possible change situations of a single pixel in thelmporal images based on the pure spectrum axedmi
spectrum assumptisn

Subpixel (or pixel) transitions have been often detected by performing peahmixing (or
classification)comparison[14], [15], [16], [17], [18], [19], [2Q], [2]], [22], [23]. The difference
between abundanséor clasdabel) is used for identifying suipixel (or pixel) land-cover trangions.
The performance of th kind of approaches strongly depends on the accuracy of each

unmixingklassification process and on their correlation. However, when dealing with



postclassification comparison, under the assumption of independent errors in single date
classification it is possible to stay that the accuracy comes close to the product of the accuracies
yielded at the two time$l17], [18], [21]. In unmixing the situation is more complex and the
estimation of the cumulative peshmixing comparisonis still an open issue.The
postclassification/unmixingapproacksdo not considethe temporal correlation between available
acquisitions.Thedrawback beconsseven more critical when dealing with hyperspectral images and
in an unsupervised context.
A possible way to consider tempo@rrelationis to consider a changaedex. As we aralealing
with optical passive sensgrthe most popular indeis the B-Dimensionaldifference imageXp
computed bysubtractinghe multitemporal images pixely-pixel [2], [5], [24], [29], i.e.,

Xy =X, -X, @
The physicalmeaningof the pixel spectrum iiXp is associated tthe land-covertransitions rather
thanto the original lanecover materials. Thus it is more complex and difficulidentify a suitable
spectral mixture modele{ther linearor nonlinear) forXp. Moreover in the Xp domain different
kinds of nachanges mightesultin very similar spectratignaturegi.e., having components all close
to the null vecto), leading to theailure of the unmixingprocedure especiallyin identifying the
distinct nechange endmembersheseintrinsic propertes limit the effectivenesf the analysis of
spectral mixture inXp. In order to preserve spectral signature informatiobath multitemporal
images (asn postunmixing comparison) and take advantage of the temporal correlatiom Casin
the spectral difference domajn)we analyze the multitemporal unmixing problem im
2B-Dimensionalmultitemporaldomainrepresentedy Xs, which isa stacked featurepacebased on

the consideredultitemporalimagesi.e.,

Xs :[Xl’ XZ] (2



The multitemporal domaiXs has beemsedfor CD purposs in theliterature Two mainapproacks
can be identified the supervised DirecMulti-date Classification (DMC)[26], [27] and the
unsupervised stacked featuransformatior{28], [29], [30], [3]]. The former identifies changes by
simultaneously classifying the stack multidate images, thusland-cover transitioris represented
by anoutput classn the final classification mafhe considered CD tasis handled as supervised
classification task. Howevethe generation of aomprehensive trainingetthat represert all the
possibletemporal land-cover transitioe makes tlke supervisedapproachdifficult to use in real
applications. Suboptimal solution to the classificatioproblem can beimplementedby using
compound classification strategid82]. The latter is implemented based othe multi-date
transformation(e.g, TemporalPrincipal Components Analysis HCA) [28], [29], Multi-date
Kauth Thomas(MKT) [30], Multi-dateGrahamSchimidt MGS)[31]), wherea carefulanalysisand
selectionis requiredto find thetransformedcomponentselated to the change classasinterest
Usuallythis steps manual and thatime consuming

Unlike the literature works, in this papere use aspectral mixture model in the multitemporal
domain Xs to solve theconsideredmultiple-change detection problenthe main advantages of
working in suchdomainare:i) it preserveghe intrinsic propertieof the spectrabignature that
representherealland-cover materialswhich areextengdalong thetemporal directionand ii) only
the occurred landover transitions are identified as endmembers in the mixture medehosethat
do notexist between the images are not considerbads a given spectradignaturein Xs is defined
as a mixture ofthe pure multitemporal endmembei®MT-EMs) associatedo a specific kind of
change or nechange classA single spectral mixtures approximagd in Xs from two independent

mixtures inX; and X,. Under thesimplified assumption of lineamixture model between the two



images Xs can bedescribedas:
Xs:[xrxz] :;saAlEl N, é.AzEz NJEH &JU Ns (3)

where U is the matrix of themultitemporalendmember setdy is the correspondingbundance
matrix,andNs representshe noise matrixc; andE;, A; andA,, andN; andN; are the endmembers,
abundancesandnoisematricesin t; andt, image mixture modelgespectivelyNote that dferenty
from the spectral signatures Xp, in the Xs domain both different change classesnd different
no-changeclasses have discriminative spatsignatures among each other.

lllustrative examples of the spectralsignaturs of stacked channelassociatedwvith two change
classesandtwo no-change clagsin the Xs domainareshown inFig.2 (a) and (b), respectivelirhe
spectral signatusof the change classhave different spectral shapes in two componergsociated
to X; and X, (seeFig.2.a), whereasthe two componentof the spectrakignature are almostthe
samefor the neachange classdseeFig.2.b). Moreover differert change and nohange classes hav

distinctspectral sign@res in themultitemporaldomainof Xs (seeFig.2 a and .
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Fig.2 Examplesof spectral signaturein themultitemporaldomainXs: (a) changeand (b)no-change classes.

. PROPOSED MULTITEMPORAL SPECTRAL UNMIXING CHANGE DETECTION
APPROACH

In this paper, lie consideregubpixel CD problemis formalizedas toestimate theabundance of



change and nohangeclassesvithin a single pixel inXs. To thisaim, we propose a novelutomatic
and unsupervisethultitemporal spectral unmixingMSU) approach thais suitable toanalyze the
spectralsignaturemixture among the change and-cttangeMT-EMs in Xs, andthus to detect the
multiple changeclassesTheoverall architectureof the propose€D approachs illustrated inFig.3.
It mainly consistsof four steps 1) multitemporalimages stacking andmage patchgeneration; 2)
multitemporal spectral unmixing; 3) change analysis4) abundancecombination andCD map

generationDetails o each step are given in the following ssdxctions.
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Fig.3 Architectureof the proposed CRpproactbased on multitemporapectralunmixing.

A. Sackingof multitemporal image andimagepatches generation

In this stepthe two B-DimensionalHS imagesX; andX; are stacked into aB2Dimensionalimage
Xs, whosespectralsignatureg(i.e., pixel vectors)ncludetwo components corresponding Xe@ and
Xo, respectivelyseeFig.2). Let P; andP, be the number of endmembénsX; andX. Let Ps be the

number of possibl®T-EMs in Xs. The upper boundf Psis given byP;xP,. In real applicationsi



is unlikely that all possible transitions among laxaber classes iX; andX, occur in an image pair.
This is because changes usually ocaith a small probability and because some transitions are
unlikely or impossible from the physical point of view. Howe\Rymight be large enough to make
it difficult to correctlyidentify all of them directly from therdire Xs. This is especiallyrue for
MT-EM associated to changes that usually show a small prior probability with respect to the ones
associated to nrohangeMoreoverendmembers in HS imagesy show a high variabilit{33], [34]
due to the langtover spectral properties and variable extefaetors(e.g, atmosphericonditions
illumination, seasonal effecktsSpectral signatures that belong to the sanaterialtransitionmaybe
different in different portions of the scefi@d]. In this paper, waisea patchschemebased orthe
local endmemberstrategy[12], [35]. The patch schem@multaneously handldsoth a possibléarge
number of endmembegrissue andgmall localspectral variabilityeffects Thus Xs is divided inZ
regularly shaped patcheeeFig.3). Let X5, be thezth (z=1,& ,Z) patch ofXs, whereZ is the
defined number of patchellotethatthe parameteZ is defineddependingon the size of the image
and the significance of theccurredchangetargetsin the scere. Endmembers identificatioris
performedon eachpatch

B. Multitemporalspectralunmixing(MSU)

For eachpatchXs; (z=1¢ , Z), MT-EMs areidentified byone of thestandard unmixing methods
developed fosingledateimage As an outpuive obtain 1) The estimate numberPs, ( ®s) of the
MT-EMs, 2) TheidentifieddistinctMT-EMs Es; according tdPs..

The numberPs, of MT-EMs is estimated automaticallyseveral algorithmscan be foundn the
literature designedfor this task For example we mentionthe HarsanyiFarrandChang (HFC)

algorithm [36], the noise whitened version of HFC (NWHFC) [37], the Hyperspectral Signal



Identification by Minimum Error (HySIME) methof38], and the recently proposedEigenvalue
Likelihood Maximization (ELM) algothm [39]. Any endmembernumber estimation and
endmembeextractionalgorithmcan beused The selection of an effective algorithm can ensure the
quality of theextractionresult, which depends on the considered dstanarioand thespecific
applicatiors. In our analysis, afteseveralempiricaltrials, the ELM algorithnmis selected as it proved
to beaccurate and stabl&LM is designed based on an empirioalservatiorof the distribution of
the differences of the eigenvalues from tlmerelationand the covariance matric€39], which is
totally parameter free and easy to be implemented. Then the popular Vertex CompaalgsisAn
(VCA) method[40] is used for extracting thHes, MT-EMs Es,. VCA is selected as thendmembers
arethe vertices of a simplex, and the affine transformation of a simplex is alsgpkex thus new
endmembers can be determirsedjuentiallyj40].

After extractingMT-EMs in each patch, aandmember podJ is built, whichis the union of all the

MT-EM sés extractedfrom Z patchesi.e, U=E;, (E,, G. Eg, Let Pybe the total number

z

of MT-EMs inU, R, =q R,,. ThusU is the set of la distinct MT-EMs extractedat the patcHocal

=1
scale U is likely to include slightlydifferent endmembers for the same laner transition, while
representinghe endmembers variabilitpill Py, endmemberg U are used in the unmixing modck
the global scaleThe linear mixture moddLMM) is consideredwhich assumes a pixel is the result
of a linear combination of endmember signatuvegyhtedwith theirabundancef7]. LMM has been
intensivelyinvestigatedn the lterature[6], [7], [8], [34]. However,as mentioned in Section the
original LMM is built based on the singiateimage,whereasherea stackeddomain is considered.
Thus an approximation is mader a given pixel xi,j) (1 ¢i ¢ 1, 1¢ j ¢ J) in Xs thatits spectrum

x«(i,}) follows a linear mixture ohunique changer no-changeVT-EMs, whichis modeled as:



Xs(i,j)=§ap0,j)ep( i) (i) (4)
where g, is the spectralsignature ofthe p-th (p=1.& , Py) endmemberin Xs, a, denotesthe
correspondindractionalabundancéwhichis the percentage ef within theconsidered pix¢) andn
is the noisevector Ay andU arethe set ofa, ande, (p=1,& , Py) for all pixels inXs, respectively.
More complexinear or noAlinearmixture models can bemployedwithout loss of validity.

Based on thextracedendmember podl, unmixingis conductedo estimate the abundanc&g of

all MT-EMsin U by solvingthefollowing non-negativeconstrainedeast squaregroblem:

A, =arg rgirﬂxS UAU||2

. , ®)
subject toAy OO0

whereAy OO0 is the impose@dbundance nonnegative constraint (ANC)

C.Change analysis

U includesall local MT-EMs that eitherbelongsto the set of changeclas®s W; or to the set of
no-changeclasges W,. Thus U can be divided into two subset$={U., U}, where U. and U,
indicatesthe endmemberpool for W, and W,, respectively.Note thatwe are only interested in
distinguishingand identifying the K unique change cIasse%Wcl, W,..., Lg/} in U;, whereaswe
considerthe W, in U, as one general achange classy, W, °w;,. Let Py andPy,, be the number
of endmembereé U. andU,, respectively, an&,=Py +Py . Thechange analysis aims separate
two classes oM T-EMs (i.e., U;. andU,) andto identify the unique change classedJin To this end,
the standard twgtepapproach to change detectiomas applied[2], [5], [24]. First binary change
detection is performed to separate changed anrchanged MTEMs, andthen multipleclassesof
change are distinguished among the changed émése first stepthe magnitud (i.e., theEuclidean
distance)of the spectral differencgseeFig.2, two componentsn the extracted MIEMs associated

to X1 andXy, respectivelyis analyzedaccording to change vector analysis
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whereg,, is theb-th stacked channelf thep-th (p = 1,6 , Py) endmember itJ. B is the number of

the spectral channels M; and X,. It is known from the literature[2], [24], [25], [4]] that the
no-change class is associated to low magnitude values whereas changes are associated to higt
magnitude values. Thus, given g, is classifiedeitherinto U; or U, depending on its magnitude

value A thresholdT, can be applied to the magnitude to separate the two classdhresholdT, is

automaticallyestimatedoased on thaistogramof the magnituderariabler calculated orXp as[2],
[24], [25], [4]]:
B

r=a(Xos) ™
whereXp, is theb-th (b=1,& ,B) component oXp. Several thresholding algorithms can be found in
the literature. The reader can refef4@] for a survey. Here we used the approach proposgzbjn
that exploitsthe ExpectationMaximization (EM) algorithnfor an unsupervised estimation of class
probability density functions and tHgayesiandecision theoryfor computing theminimum error
decisionthresholdT, according to the estimated probability density functions.
The MT-EMs in U. are extracted from different patches representing the sphsimibution of
different changetargets on the imagg.e., more than one MFEM in U may be associateto the
sameland-cover transition)Thusin the second stegroupingis required taclusterthe MT-EMs that
belong tothe samechangeclass whilepreserving theispectralvariability. The finalMT-EM groups
representhe K uniquechangeclassest aglobal level.For theendmembegrouping, we adoptecha
iterative schemedhat wasdesignedased orthe SpectralAngle Mapper(SAM) [12]. Instead of using
SAM, in this work we selectetthe spectral measurement proposed48], which consides both the

spectral shape information by SAM and the stochadbehavior of the spectra bySpectral



Information DivergencégSID). Let e;ande, be two giverMT-EMsin Uc. Letr = (ry, rp, € rs)' be
the probability vector 0&= (€21, €226 , €228)' With 1, =e, /& " e,,, andm = (my, mp, é ,
mee)" for epwith m, = e, /& = e,,. The SID measure is defined [4sf]:

28 28,

b=1 b %

andthe SAM is defined as

, €28 28 8, (9)
SAM(e,,e,) =cos ég € ,€ J ae,f de.rf
go=1 b1 b &

So the SIDSAM combinedspectraimeasure/ is defined a$43):

J(e, e)=SID(e, e), ANgSAM(e,.e), (10
wheresin(A is thetrigonometricsinefunction
The MT-EM groupingstarts from arandominitialization, where the first classy, is randomly

assigredto anendmembem U.. The SIDSAM measure/ is thencomputedoetween it an@achof

the remaining endmembersn U.. If the value of J is smaller thana giventhresholdT,, the

considerecendmembers clusterednto w, . Then the grouping procedure continues for the second
class n, on thoseendmembersithoutalabel The iteratiorterminate when alendmemberbave
alabel ThethresholdT;is a user defined parameter thanhtrok the similarity between endmembers
required for groupingGiven the expectelligh similarity between MIEMs of the same landover
transition T, is expected to be smalFinally, the endmember grouping resuits K unique
Iandcovertransition{Wcl, W,..., @ . By consideringalsothe nachange classy, in total we have
K'=K+1 classe Xs

D. Abundance combinatioand fnal changedetection map generation

Based orthe grouping resulfor each pixel inXs, the abundancesf local MT-EMs that belong to a

given class are summed together, tgeserang the final abundance for that claget w,bea given



classin W {:l/l/Cl W,...., W, n}"'- Thefinal abundancenap A, , of classizin Xsis computed as:

AJ,WE = a A),ep (11)

el w,

where A, is the abundancemap of a given MT-EM g, in U, and el w, p=1¢&, Pu.
Abundances in equation (11) solve the unmixing problem prVvide land-cover transition
information at sukpixel level.
As a side output a crisp multiptdhange detection map can be generatedssigningto eachpixel
X1, ]) (1¢ i €¢I, 1¢ j ¢J) in Xsthe clasaw. having the maximum abundance value:

(i, ) arg maxa,, (] ) (12)
where a, (i, j) is the abundancealue of classt. in pixel x(i,j). This output can be useful in the

context ofsomeapplications or for comparison with the results of stdtthe-art methods working

at pixel level.

V. EXPERIMENTAL RESULTS
A. Simulated stacked multitempofatperspectratiata set
The first data set islefined bysimulatinga stacked multitemporal HS data set using reference
MT-EMs from USGS digital spectrdibrary-splibO6a [45. Three spectral endmemberse(
plywood_gds365sheetmetal _gds352inyl_plastic_gds37Rwere selected and thalimensionality
was resampledo 200 channels(seeFig.4). We stacked the known endmembers to simulate nine
MT-EMs, i.e,, nine class transitionsix areassociated tehanges and thrée no changesvMT-EMs
spectral signatures are provided-ig.5 (dasledlines). The 9 MT-EMs were employed to generate a
300 300 pixelsimage Each ppxel is associated to 400-dimensional feature vector computed as

linear mixtureof the nine MFEMSs. Four versions of the stacked image were generatéd



different levels ofSignatto-Noise RatioqSNR) valuesi(e., SNR=10, 20, 30, 40 dB).
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Fig.4 Spectraendmembers from USGS spectral librfd$] usedfor the generaion of the simulated data sets.

Theperformance of the proposed MSU approach has been quantitatively evaluated by cotinguting
Root MeanSquareError (RMSE) [46] value between the class abundaestmated by the proposed

MSU method andhe knownsimulatedabundancealues

& &a,0.0)- 2 i.0)) 13
RMSE= J

1J

where ag., (i,j) is the abundancealue inthe spatial position (,j) in the simulatedabundance
map A, Of classw. Theaverage RMSEalueamong all classes wassedfor comparison. For
each noise level, several trials were conducted by: i) varlinig the rangg0.005, 0.050] with a
step of 0.0@; andii) considering four values fahe Z parameteri.e., 1 (the entire image), 2, 4 and 8
All experiments were carried oty using Matlab R2014a, on an Intel(R) Core(TM}4&00
quadcore 2.50GHz PC with 4GB of RAM. Time meumptionis provided inTablel.

For each simulatediata seta sensitive analysis was conducted with respect to the valligtbét
controls the grouping of MFEMSs. Since T, optimal ranges independent o, we reportfor each
data sethe resultsfor Z=8. As T, increases the number MT-EMs decreasesBy increasing the
signatto-noise ratiothe method identifies the correkt=6 number of changes wheF; is in the

ranges [0.017, 0.020], [0.013, 0.017], [0.011, 0.01&hd [0.012, 0.014]respectively Thus the



optimal T is in the rangg0.01, 0.02, approximately. This range can be used as a guidan@nfor
empiricalselection of theptimal threshold. HoweveT,; depends on the considered data set and the
complexityof thescenario. For each SNR levetwelected threshold valuén the above rangg.e.,
0.018, 0.015, 0.013 and 0.018} the next experiments.

Tablel summarizes MSU performance when varyiigVe canobservethat: 1) by increasing the
parameterZ (i.e., number of patches), more local MEMs were identified (see the increasing
number ofPy in all data sets). Thus the correct number of change classek£6) are more likely

to be detectedMSU always fai$ to detect the corredf value when the entire image is considered
(i.e., Z=1) thusconfirming the effectiveness of the patch scher@gby increasing the amount of
noise, also th& required to detect the correkt value increases. The higher number of patches
allows to better capture the local effects of nolser example, in the case of SNR=10dBshould

be set tdB to detect all cinges, whereas in the case of SNR=402 is enough 3) as expected
the averagemulti-class RMSEvalue increases when increasing the noise lduebther words it
becomes more difficult to properly estimate MMs. However, in all cases the RMSE values are
low, thusa goodapproximatiorof the abundancas still achievedThe average RMSE performance
saturates whed is lage enough to detect the corréctvalue However the computational time
increases significatyt when increasing; 4) the time cost of the proposed MSUngeneral small.

In addition, a quantitative evaluation is conducted by comparing the estinMie&Ms with the
correspondingeference one$-ig.5 shows an example of the estimated-EWs for theSNR=30dB
(Z=4 andT ;=0.013 experimentTheestimatedT-EMs represensix change classes havinogique
spectral shapegfter the grouping steggach group of MIEMs shows a high similarity to one of the

simulated MTEMs, belonging either to a change or aaimange clasgseeFig.5).



TABLE | CD RESULTS OBTAINED BY THE PROPOSEDMSU METHOD . THE AVERAGE RMSE AND THE COMPUTATIONA L
TIME ARE GIVEN FOR T HE CASES IN WHICH TH E NUMBER OF CHANGES IS CORRECTLY IDENTIF IED (SIMULATED
STACKED MULTITEMPORA L HYPERSPECTRAL DATA SET).
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Average Computational
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1 6 4 - -
2 11 4 - -
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1 6 4 - -
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Fig.5 Spectral signatures of the MHMSs (solid line) extracted by the proposed MSU approdeh (T ,=0.013) on the
simulated data séENR=30dB), where six unique change classegdjiferentcolors) are identified, and iéeno-change
classesre in black. The reference WHMs are plotted as dastilines.



(©)
Fig.6 False color composisgbands: R: 40, G: 30, B: 20) of (a) the HS image acquireth®AVIRIS sensor in Salinas

scenario X;) and (b) the simulated changed imajg computed with an additive white Gaussian noise (SARIB). (c)
pixel-level change reference map (eight changes in different colors, andarmge class in white color).

B. Simulatedchyperspectratemote sensindata set

The second data set is made up of a HS remote sensing aoqgeedby the AVIRIS sensor in
1998 on Salinas vale California. The original image has 22®ntiguous spectral bands with
wavelength from 400nnbo 2500nm characterized by a spatial resolution of 3.7m and a spectral
resolution of 10nmGround truthdata are vailable thatcontain16 materiaklassege.g, vegetaion,
bare soil, and vineyaydA subsebf the whole image was selected havingzeof 21797 pixels.In
pre-processing20 water absorption bandse(, bands 10812, 154167 and 224) were discarded
obtaining 204 bands for the experiment§aking advantage of the available ground truth, we
simulated arimage (considered as;) based on the original image (consideredXgs In orderto
obtaina realistic simulated image, ten tiles were extracted ¥ertseeFig.6 (a)) and inserted back

in different spatial position®n X; by replacing the whole spectral vectors. Thsvasgenerated
with eight simulated change classes (B&g6 (b)). A small constant bias value was appliecKido
simulatea stationaryadiometricdifference White Gaussian noise was added with different levels of

SNR valuesi(e., SNR=10, 20, 30, 40dB). Thus, wbtainedfour image pairs built by; and one



out of the four simulate¥,. False color composites &f and one of the simulatet, (i.e., SNR=2(
are shown inFig.6 (a) and (b), respectivel¥ig.6 (c) is the reference change map. Detadedulated

land-cover transitions and their corresponding numbesaaiplesare listed inTablell.

TABLE Il
SIMULATED CHANGE CLAS SES ANDRELATED NUMBER OF SAMPLES (SALINAS DATA SET)

Change class| Simulated changes (fromX; to X;) | Samples (Number of pixels)

We, CeleryY Vi nyard_un 388
Ve, Fallow_smoothY Vinyard untrained 160
Wes CeleryY Stubble 468
We, StubbleY Celery 550
Wes Fallow_smoothY Stubble 154
Wes Vinyard_untrained? Celery 108
Ve, Vinyard_untrained Fallow_smooth 108
Wes Fallow_rough_plowY Fallow_smooth 35

W, No-change 19078

MSU was applied to the four imagaigs leading to similar resultset usanalyzein detail theones
obtainedfor the image paiassociated witlBNR=20dB ImageXs wasdividedit into Z = 4 patches
Xsz(z= 1 A&Z =1 andZ = 2 failed to detect all thsimulatedchanges), se€ig.7. U was
computedas the union of all MIEMs from all patches (se€€ig.7) andthar abundance As were
calculated according ). U. andU, were separated id by automatic thresholding.he estimated
T, was obtained by25 and resultecequal to 0.82According to the analysigresentedn Sedion
IV.A T, was set t00.015 and resultedas expectedn K=8 changes.MT-EM abundances were
summed into the finadbundance of change and nchange classes based on the groupasgltsto
generatehe final subpixel CD map4.1) and the crisp pixdevel CD map(12).

FromFig.7 we can see that the MSU approasiiracted35 MT-EMs from four patchesgpresenting
very well thedistinctendmembers (including both the change andhmnge classes) in each local

patch After change analysis, all the simulated change targets were identified correctly having at least



one hit MT-EM on eachof them.Even the mall size change classes were detestentessfully The
endmembegrouping resulted in correct eight unique change classes.pBotra signatures of the
detectedMT-EMs (associatd with the detected eight change classes and Huharmge class) are

shown in Fig.8, and the corresponding abundances of each class are illustreig®if@)-(i).

Py =24 Pu=ll | Py=35

(5) no-change endmember (¢ change endmember
Fig.7 MSU estimatedMT-EMs in thesimulateddata set with SNR=20dE£4, T,=0.015). From left to right, up to down
the four patcheXs; (Ps1=10), Xs2 (Ps2=8), Xs 3 (P53=9) andXs4 (Ps4=8) areshown.

From Fig.8 andFig.9 we can observe that: e detectedeight change classes have unigpectral
signaturedn the Xs domain. Twocomponentof MT-EM spectrahawe different shapes, indicating
the change naturef the endmembersyhereasthe nechange class has similar spectral shapes in
both components; 2) MEEMs are identified from spatial different regions Xs, but group into a
same classe(g, see MTFEMSs in change class 3, class 4 and class 6) show slight differentbesrin
spectra, thus confirming the endmember spectraabidity. Their abundances are summed into the
correspondingyroupedclass toproperlydescrile the unique change classn the global scene; 3)
the abundance maps show a good unmixingsapératiorresult among classes (se®.9 (a)-(i)),
where the detected eightariges and the nchange background shows a clear contrast of their
abundances (with respect to the colof$jus the considered multiple charggtection problemvas
successfullysolved by estimating the percentage ofass substanceat subpixel level.Similar

considerations hold for all tHfeur simulated pairs.
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Fig.8 Spectral signatures of the MHMs extracted by the proposed MSU approach orsitlnellated data s€ENR=20
dB, Z=4, T,=0.015), where eight unique change classesdjiferent colors) are identified, and the fohange class
endmemberare in black. Endmembers that belong to the same class represent the variability in the image.
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Fig.9 Final classabundancesrothe simulated data set (SNR=20dB-4, T,=0.015), where (a)h) arethe abundances of

eight change classeand (i)of theno-change class.

Pixel-level CD mapsobtained by thg@roposed MSU (wittZ = 4) on four simulated HS data set®
shown inFig.10. Froma qualitative analysisf the CDmaps we can observe th#dte proposed MSU

achieved good results under different noise levels. All eight change classes were successfully



detected in all casebut the one with the highest noise level, where the smallvas not detected
(seeFig.10, SNR=10dB). This is due to the fact thas expectedhe significance of small changes
decreases when increasing the noise levels, thugaach divisiondoes not guarantee aay local

analysisIn this case, a smaller patch scale is required to reacptimeal detectiorscale.

SNR (dB) CD maps SNR (dB) CD maps

. b= || = n- |

20 ’ .. - 40 . .. - m

Fig.10 Changedetection maps obtained lilile proposed MSU approach on different simulated HS data sets (with
SNR=10, 20, 30, 40 dBpifferent changelassesre in different colors, and the 4shange class is in white color

As no subpixel reference information isvailable for this data seuantitative analysis is conducted
at a pixel level. The pixellevel CD mapbtainedby the proposed MSldpproachwere compared
with those yielded by three pixtdvel CD-HS methods: 1) thaierarchicalspectral change vector
analysis (HSCVA)[2], 2) the sequential spectral change vector analy$B\S) [5], and 3) the
unsupervisedk-means clustering applied to the changed spectral change véatoosding to Sec.
IV.A, T;was set td.015for all four caseskFourZ values were teste@de., Z=1, 2, 4, § to detect the
smallest one that guarantees the detection oéijig simulated changeshe optimalZ equals to 4
in the cases when SNR=20, 30, 40dB, dr8 in the case of SNR=10dB.d*antagewas given to
the k-means by providing as input the known number of clagsesK=8), whereas for the other
methods this number was estimated in the CD procémssfifial result ok-means wagenerateds

the average of 100 trails orderto reduce the@ncertaintyof the randomnitialization.



TABLE lll
CHANGE DETECTION ACCU RACY, ERROR INDICES AND TI ME COST OBTAINED BY THE CONSIDERED METHO DS
(DIFFERENT SIMULATED HS DATA SETS).

Unsupervised and Errors Time Cost

SNR Method automaptic detection? OA(%) | Kappa (pixel) (sec.)
HSCVA No 99.69 | 0.9829 64 312.67
10dB S’CVA No 99.74 | 0.9856 54 196.18
k-means No 98.32 | 0.8988 353 47.93

MSU (Z=8, T,=0.015) Yes 99.54 0.9749 96 71.42
HSCVA No 99.99 0.9995 2 304.66
20dB S’CVA No 99.98 0.9989 4 175.41
k-means No 99.47 0.9702 111 49.33

MSU (Z=4, T ,=0.015) Yes 99.96 | 0.9978 8 62.69
HSCVA No 99.99 0.9997 1 297.54
30dB SCVA No 99.98 | 0.9989 4 177.59
k-means No 99.66 0.9811 71 54.61

MSU (Z=4,T,=0.015) Yes 99.98 | 0.9989 4 65.77
HSCVA No 99.99 | 0.9997 1 316.76
40dB S’CVA No 99.98 0.9989 4 182.25
k-means No 99.78 0.9880 45 53.48

MSU (Z=4,T,=0.015) Yes 99.9 0.9992 3 66.81

Quantitativeresults are given ifablelll, where accuracy indices inclung the Overall Accuracy
(OA), the Kappa CoefficienK@appad andthe number of detectiogrrors werecomputed according to
the available reference maprom Tablelll, one can see that the two stafehe-art hierarchical
methodsachievedgood results in all four casesndobtaired the highesDA andKappavalues. The
systematic tojglown structurein the hierarchicalanalysis gradually recovers and models the hidden
change information in the data set, thus resulting in raocerateresuts when compared with the
proposed onstep processinfR], [5]. However, it is worth noting that: 1) both HSCVA aniCSA
methods aredesignedin a semiautomatic fashionig., an initialization for model selection in
HSCVA [2] and a user interaction for change identification36\8A [5] are required, respectively);
2) A significant dfort is requiredto search for thenhierarchcal structure which increases the
implementatiorcomplexityand the time cost (s@@blelll). Forexample bothhierarchicaimethods
resulted in a threkevel hierarcty with more thantwelve nodesand a time consumption &5

minutes for the simulated data set associated with SNR=20dBth® contrary the poposed



automatic MSU methodompleted the process around 1 minutevith an accuracy decrement of
only 0.02% Note that Bhough the referencek-means algorithm was applied using the known
number of classes and relatively computational fast, it resulted in a significantly higher number of
errors than the other three methods ($able Ill). This indicatesthe difficulty of the CBDHS

problem to be solved when applying the clustering directly to thedimgknsionaHS images.

C. Real Hyperionhyperspectratemote sensing data set

This data set isnade up of a pair of real -bemporalHS remote sensing images acquitey the
Hyperion sensor mounted onboard the-E@atellite on May 1, 2004&{) and May 8, 2007X>). The
study area israagricultural irrigated land of Umatilla County, Oregon, Unifadteswhich has a
size of 180x225 pixels. Thédyperion image has avavelengthrange from 350nm to 2580nm,
characterized by apectral resolution of 10nm and a spatiatesolution of 30m. After the
pre-processing phase i(e., bad stripes repairing, uncal#ted and noisiestbands removal,
atmospheric correction, aegistration),159 bandsi(e. 857, 82119, 131164, 182184,187-220)
out of the original 242 bands were udedthe considered CD taskhangesn this scenariamainly
include the langtover transitions betweeicrops, bare soilyariations in soil moisture and water
contentof vegetationNote that noground truth data are availalfter this data sethusthe detailed
validation of the results was donealitatively through a careful visuahalysis.Fig.11 (a) and (b)
show the false color composite of th¥; and X, images respectively Fig.11 (c) presents a false
color composite of three bands Xp, thus possible change classes are shown in different colors

whereas the gray pixels indicate theaiange background.



(b)

Fig.11 Bi-temporal Hyperion images acquired on an agricultiariglatedscenario. False color composite (wavelength: R:
650.67nm, G: 548.92nm, B: 447.17nm) images acquired in: (a) 2QD4K) 2007 X5), and (c) composite of threg,
channelgwavelength: R823.651m, G:721.90hm, B:620.151m).
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Fig.12 MT-EMs extracted by the proposed MSU approashl( T, =0.013) on the real bitemporal Hyperion data set.
From left to right, up to down the four patchés (Ps1=12), Xs2 (Ps2=7), Xs3 (Ps3=13) andXg4 (Ps,=10) are shown.

Experiments were carried out by using the proposed Mpproachand the three pixdevel
reference methodsé., HSCVA, SCVA, k-means) as in the previous ca¥ewas divided into four
regularpatchegZ=4) (seeFig.12). MSU identified42 local MT-EMs (Fig.12). T, was automatically
detected an@équab 1.486.T, wasset according to thanalysis presented i&edion IV.A equal to
0.013. Sevenuniquechange classes were detected. The final class abundamt€D mapwere
computedaccording tq11) and(12).

Theextracted MTEMs by MSUare illustrated irig.13. Their correspondingbundanceare shown

in Fig.14 (a}(h). We can observe that: liffdrent or similarspectral shapes in two components of



the MT-EM spectrum indicatehe presenceof the change classes and thechange class iXs,
respectively. The MIEMs of the change classes haliscriminableand uniquespectralsignatures
among each other (Sde€g.13 change classes-7); 2) anendmemberset rather than a single
endmember was usedtepresent detected change class, thus the change targets were described via
unmixing by also considering the endmembariability (seeFig.13 change classes-3, 57); 3)

even thouglwe are not interested in distinguishing NEMs of nachange classes among each other
Up, is an important and nemegligible sourceof information for themixture model inXs. They were
considered in the unmixing process, and their abundances summed into the-éinahge clasgx.

A good estimation of the nchangebackgroundindicatesits good separation fronthe change
classes (sekig.14 (h)); 4) the abundances of change classesHiggR4 (a)-(g)) confirm the accurate
representatiomf the unique changes and a discrimination among them. Froabthelancenaps,

one careasilyobserve the spatidlistributionof different change classes in the sceneianestigate

in detail their composition within a pixel, thus better understanding and solving the considered CD
problemat subpixel levelThe 7" MT-EM in Fig.14 (g) is characterized by a set of circular patterns.
They are likely to be generated by sorasidualmis-registration. This induces the detection of false
alarms along borderbetweenroads surrourding the agricultural fields and the fields their self
Visual analysis on the Google ma@)] tells us that those roads have an average width1®hg,
which is less than half pixel on tli&yperionimages whosespatialresolution is 30m. Despite in the
preprocessing step theesidual error of co-registrationis limited within 0.5 pixel, it may still
contributeto the definition of changendmembex and thus change classes. However, these classes
canbe associatedvith noise in a posprocessinganalysis andpossiblyused for theoptimizationof

the coregistration proceqgig|.



Fig.13 Spectral signatures of MEMs extracted by the proposed MSapproach(Z=4, T, =0.013) on the real
bi-temporalHyperionHS data setSevenunique change classase identifiedand shownin different colorswhile the
no-changeMT-EMs are in black. Endmembgthat belong to the same class represent the variability in the image.
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Fig.14 Final class abundances obtained thg proposedMSU approach Z=4, T, =0.013) on the realbi-temporal
Hyperion data set: (gg) showthe seven change classes and (h) thelamge class.


















