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Abstract-This paper presents an overview on the image fusion concept in the context of 

multitemporal remote sensing image processing. In the remote sensing literature, multitemporal 

image analysis mainly deals with the detection of changes and land-cover transitions. Thus the 

paper presents and analyses the most relevant literature contributions on these topics. From the 

perspective of change detection and detection of land-cover transitions, multitemporal image 

analysis techniques can be divided into two main groups: i) those based on the fusion of the 

multitemporal information at feature level, and ii) those based on the fusion of the multitemporal 

information at decision level. The former mainly exploit multitemporal image comparison 

techniques, which aim at highlighting the presence/absence of changes by generating change 

indices. These indices are then analysed by unsupervised algorithms for extracting the change 

information. The latter rely mainly on classification and include both supervised and 

semi/partially-supervised/unsupervised methods. The paper focuses the attention on both 

standard (and largely used) methods and techniques proposed in the recent literature. The 
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analysis is conducted by considering images acquired by optical and SAR systems at medium, high 

and very high spatial resolution. 

 

Keywords – Multitemporal data fusion, Fusion at feature level, Fusion at decision level, Multitemporal 

images, Time series, Change detection, Image comparison, Land-cover transitions, Multitemporal image 

classification, Unsupervised methods, Supervised methods, Semi-supervised methods. 

 

1 INTRODUCTION 

In the last years a strong interest has been devoted to the development of novel methodologies for 

multitemporal information extraction and analysis. This is demonstrated by the sharp increase in the number of 

papers published on the major remote sensing journals, the increased number of sessions in international 

conferences and the increased number of projects related to multitemporal images and data. 

The main reasons for this are: i) the increased number of satellites with higher revisit period that allow the 

acquisition of either long time series or frequent bi-temporal images, ii) the new policy for data distribution of 

archive data that makes it possible a retrospective analysis on large scale (e.g., the Landsat Thematic Mapper 

archive), and iii) the new policies for the distribution of new satellites data (e.g., ESA Sentinel). 

Multitemporal information extraction methodologies differ on the basis of both the specific investigated 

application and the kind of data available. Accordingly, different kinds of multitemporal products are more 

suitable to be considered in certain applications than others. The most widely addressed applications are related to 

products obtained through change-detection analysis, multitemporal classification and trend analyses of temporal 

series of data (for change identification or forecasting/prediction). 

According to an information theory perspective, the information in multitemporal data is associated with the 

dynamic of the variables that are measured, which is linked with the changes occurred between successive 

acquisitions. Thus the most interesting applications are related to the fusion/integration of multitemporal 

data/image for the detection of changes. We can distinguish among abrupt changes that occur in a short time (e.g., 
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the ones caused by forest fires, floods and earthquakes) or medium/long term changes, which can be appreciated 

only by comparing long time series of images (e.g., desertification, urban growth). The above-mentioned 

applications can be addressed by using images acquired at different times by: i) the same sensor; ii) different 

sensors with similar properties; iii) different sensors with different properties. Accordingly, multitemporal data 

fusion can be integrated with multisensor fusion (when multitemporal images are acquired by different sensors 

either at the same time or at different times) or multisource fusion (when ancillary data are used for representing 

the information at given times of the considered temporal acquisition). However, in this paper we focus on the 

time variable only, assuming that the temporal images are taken from the same sensor at different times and 

analyse in detail the problem of change detection. 

The main methodological approaches proposed in the literature to the automatic analysis of changes in multi-

temporal remote-sensing images can be categorized in relation to the different levels at which fusion in the time 

domain can be conducted. Two main categories of algorithms can be defined: 

1. Fusion at feature level: includes algorithms where multitemporal information is extracted by means of 

fusion of multitemporal features/images. Multitemporal information is associated with differences in the 

spectral signatures (or the backscattering coefficient) of the land-covers. After integration/fusion the 

separation between changed and unchanged areas (i.e., each pixel is associated with one of two possible 

classes: the class of changed patterns or the class of unchanged patterns) is performed mainly by 

unsupervised decision approaches. Sometimes land-cover transitions can be distinguished but without 

explicit labelling. 

2. Fusion at decision level: includes algorithms that elaborate the multitemporal signature performing fusion 

at the level of decision. Approaches in this category are mainly supervised or semi/partially-

supervised/unsupervised. They explicitly identify land-cover classes in each considered time instant and 

thus land-cover transitions (these methods can also be used when there are no changes between images for 

generating land-cover maps). 

Within each category methods can be divided according to the strategy for extracting multitemporal 

information.  
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Figure 1 shows the tree of multitemporal data fusion approaches that will be described in the following. It is 

worth noting that this is a possible categorization of the methods presented in the literature. However, alternative 

categorizations could be considered. 

 
Figure 1 Tree of multitemporal data fusion approaches. 

 

Methods in the tree should be implemented taking into account the characteristics of the considered kind of 

data. However in general the overall block scheme of multitemporal fusion is the one shown in Figure 2. 

 

Figure 2 Overall block scheme of multitemporal information fusion. 
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2 FUSION/INTEGRATION AT FEATURE LEVEL: MULTITEMPORAL IMAGE 

COMPARISION 

The aim of fusion at feature level of multitemporal images is to generate new features that highlight 

multitemporal information. These features are often referred to as change indices since they are employed to 

highlight changes occurred in bi-temporal image pairs (X1 and X2 acquired over the same area at different times t1 

and t2). Change indexes are the main input to unsupervised change detection procedures that generate maps 

without the use of ground reference information. Figure 3 summarizes the basic processing chain for 

multitemporal information fusion and extraction performed at feature level. Due to their unsupervised nature this 

kind of approaches are widely employed since at an operational level ground reference information is often not 

available (e.g., the user is interested to investigate a phenomenon occurred in the past for which no information 

was collected), costly (i.e., it requires in situ surveys by experts with proper equipment) or impossible (i.e., 

ground truth is required over a very large or arduous area) to be collected. Unsupervised change detection 

approaches mainly distinguish between changed and unchanged pixels. Some techniques allow identifying 

different kinds of changes as well. However they do not give any explicit label to land-cover transitions. In the 

final map each pixel is associated with one among the following classes: no-change (n) or change (c). In the 

case that land-cover transition can be distinguished, the latter class can be further detailed in K kinds of change as 

1 2
{ , ,..., }

Kc c c c     [1]. Fusion at feature level commonly assumes that bi-temporal images are accurately 

pre-processed in order to mitigate differences that do not depend on real changes occurred on the ground. In other 

words pre-processing aims at making multitemporal images as similar as possible to each other. Pre-processing 

usually includes radiometric corrections (relative or absolute), geometric corrections (co-registration, ortho-

rectification, geo-referencing), de-noising, etc. These steps have to be conducted in different ways depending on 

the kind of considered data (either active SAR or passive optical). A literature survey on the pre-processing phase 

is out of the aim of this paper however a large amount of material can be found in the literature. 
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Figure 3 Block scheme of a standard change detection approach based on fusion at feature level. 

 

Several mathematical operators can be applied to extract a change index. The choice of the specific 

mathematical operator gives rise to different kinds of techniques [1],[3]-[7]. Change indices by bi-temporal image 

fusion highlight information associated with changes in the spectral signature or the backscattering coefficient 

depending on whether optical or SAR images are considered, respectively. Given the technological differences in 

the acquisition processes of the two mentioned kinds of data they need to be treated separately. In order to extract 

the change information after fusion, a proper unsupervised image analysis technique should be adopted. In the 

literature approaches have been developed including pixel-based [1],[8],[46], context-based [23],[46], single-scale 

[1]-[18] and multi-scale [15],[20]-[32] approaches. Among pixel-based techniques, the most widely used is based 

on the selection of a decision threshold that aims at separating changed from unchanged pixels. The decision 

threshold can be selected either with a manual trial-and-error procedure (according to the desired trade-off 

between false and missed alarms) or with automatic techniques (e.g., by analysing the statistical distribution of the 

image obtained after comparison, by fixing the desired false alarm probability [8],[9], following a Bayesian 

minimum-error/cost decision rule [2],[46], using methods based on fuzzy theory [17],[18], etc.). Among context-

based techniques there are the ones based on fixed size sliding windows [15],[46], and the ones based on adaptive 

segmentation [14],[97]. Among multi-scale techniques, three main strategies can be identified: adaptive multiscale 

techniques for SAR images [20], multilevel parcel-based technique suitable for very high resolution images 

[29],[97], and approaches based on the use of similarity measures [15],[34]. 

Change-detection 
map (M) 

Analysis of the change 
index 

Remote Sensing 
Image (date t1) 

Remote Sensing 
Image (date t2)

Feature level fusion

Pre-processing Pre-processing 
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A Fusion of Multitemporal Optical Images 

As mentioned above, fusion of multitemporal data can be performed by image comparison. Several techniques 

can be employed to this end. When dealing with optical data acquired by passive sensor these techniques mainly 

rely on the difference operator (see Table 1). This is because the noise model in optical images is additive and the 

natural classes have a Gaussian distribution. Thus the difference operator results to be the most effective one. 

The simplest way to apply the difference operator is to consider the same spectral band for X1 and X2 and 

perform subtraction pixel-by-pixel. This technique is referred to as Univariate Image Differencing [1],[5]-[7]. The 

follow up of this approach leads to the use of multiple spectral bands [1]. This technique takes the name of 

Change Vector Analysis because the results of differencing are a multidimensional Spectral Change Vector (SCV) 

[35],[36],[41],[44]-[55]. Under the assumption of Gaussian distributed natural classes and being the difference a 

linear operator, classes of change and no-change in the SCV feature space result to be Gaussian distributed as well 

[41]. However when non-linear features are extracted from SCVs, the analysis becomes more complex. In fact, in 

order to better characterize the properties of changes it is common to compute the magnitude and the directions of 

SCVs by applying Cartesian to Spherical coordinates transformation [41],[44]-[55]. The magnitude image is such 

that pixels associated with land-cover changes present values significantly higher than those of pixels associated 

to unchanged areas [1],[47]. Both change and no-change classes are often assumed to follow a Gaussian [55] or 

nearly Gaussian [36] statistical distribution. However, in [47] it has been demonstrated that, under some 

reasonable assumptions, they are Rayleigh and Rice distributed, respectively. Direction variables carry less 

information about unchanged samples since they result to be uniformly distributed [47]. They become highly 

relevant when analysing the classes of change instead, since they characterize different kinds of change. Changes 

assume preferred directions depending on the kind of change. Examples can be found in the literature where the 

direction information is used in the change detection process [1],[47]-[55]. Figure 4 gives an example of a change 

detection problem in multispectral optical images and of fusion at feature level conducted by CVA. A detailed 

analytical derivation of class statistical distribution in the magnitude-direction domain can be found in [47], which 

was developed under the assumption that multitemporal images are well co-registered and radiometrically 
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corrected. If the assumptions on image pre-processing are not satisfied, the statistical distribution of spectral 

change vectors becomes more complex and the change-detection process rather difficult and less effective. This 

points out the importance of a proper pre-processing [47]. Cartesian to Spherical coordinates transformation 

preserves the dimensionality problem. Sometimes this can be a drawback since it hampers the visualization of the 

feature space when the dimensionality becomes higher than 3. A possible alternative is to use Compressed Change 

Vector Analysis (C2VA) [50]. C2VA compresses the information present in SCVs by computing the direction as 

the angular distance between the multispectral difference vector and a reference vector. If combined with the  

 

 
(a) (b) 

 
(c) (d) 

Figure 4 Example of fusion at feature level in multitemporal optical images. RGB true colour composition of Landsat-
8 images acquired in: a) July 2013, and b) August 2013. c) Magnitude image and d) direction image computed 
according CVA. The area of interest is located close to the Lake Omodeo in Sardinia Island (Italy). Changes occurred 
between acquisition dates are associate to a forest fire (left-top) and the increase of the lake surface (center-top). 
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(a) (b) (c) (d) 

Figure 5 Example of fusion at feature level in multitemporal optical images. RGB true colour composition of 
Hyperion EO-1 images acquired in: a) 1st May 2004, and b) 1st May 2007 (images downloaded from Geological Survey 
(USGS) website http://earthexplorer.usgs.gov/). c) Magnitude image and d) direction image computed according 
C2VA. The area of interest is located close to Hermiston city in Umatilla County, U.S. The study area is an 
agricultural land and changes are mainly associated to crops. 
 
magnitude we obtain a 2-dimensional feature space that can be easily visualized and where no information is 

neglected. Both characteristics become highly interesting and are successfully applied when multitemporal 

hyperspectral images are considered [51]-[53]. A limitation of this approach is that the lossy compression of the 

direction information may result in recognizing some classes of change as a single class. Figure 5 gives an 

example of a change detection problem in hyperspectral optical images and of fusion at feature level conducted by 

C2VA 

CVA and difference operator have been mainly applied to the original image feature space. However examples 

can be found where they are applied to the posterior probability space [54] as well as to vegetation indices 

(Vegetation Index Differencing) [1],[3] or other linear (e.g., Tasselled Cap Transformation [3], Multivariate 

Alteration Detection [56]-[58],[108]) or non-linear combinations of spectral bands. Transformation-based 

techniques like Multivariate Alteration Detection (MAD) [108] have been widely investigated resulting in several 

subsequent amelioration like the Iteratively Reweighted (IR)-MAD [56],[57] combined with Maximum 

Autocorrelation Factor (MAF) Transformation to find maximum change areas and its kernel version [58]. In the 

transformed feature space and after differencing, similar to CVA, unchanged and changed areas will show 

significantly different values. MNF (Maximum Noise Fraction)/MAD [58] has been employed for change 
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detection in multisensor multitemporal images as well. The main characteristics that makes the MNF/MAD 

suitable for multisensor change detection are: i) random variables associated to the acquisitions before and after 

the event of change should not necessarily have same dimension (i.e., multitemporal images are not required to 

have the same number of spectral channels); ii) the MNF/MAD method is invariant to linear transformations, 

which implies that the impact of missing radiometric normalization and rectification is lower than for other 

change detection approaches. An alternative approach based on transformations is to use Principal Component 

Analysis (PCA). PCA can be applied separately to the feature space at single time image [1],[4],[7] or jointly to 

the stacked image features [103],[104]. In the first case, comparison should be performed in the transformed 

feature space before performing change detection; in the second case the minor components of the transformed 

feature space contain change information. Other linear transformations have been used such as tasselled cap, and 

Gram-Schmidt orthogonalization [106]. 

More recently the multiscale/resolution concept has been introduced in the multitemporal image fusion 

literature. The first works were devoted to SAR data because of their complexity. However their use resulted to be 

effective in optical images as well. As an example the Wavelet decomposition was used in [21],[23]-[25], and the 

Contourlet transform was used in [30]. Such transformations have been applied either before or after applying 

fusion at feature level. Multiresolution profiles for multitemporal images have been elaborated by using features 

extracted from multiresolution segmentation [29],[32], morphological profiles and their improvements [35],[36], 

and methods based on scale-invariant feature transform (SIFT) [37]. More sophisticated approaches to the 

representation of multiresolution information have been developed when very high spatial resolution (VHR) 

images should be analysed (Figure 6 shows an example of a change detection problem in VHR optical images). 

Such approaches aim at effectively model the high level semantic information available in VHR images [41]. 

Reasoning at a higher level of abstraction makes such approaches intrinsically suitable for multisensor analysis 

[42]-[44]. Sometimes more than one change index is jointly used in the detection process [45]. Table 1 gives an 

overview of the most widely used comparison operators for multitemporal fusion at feature level when passive 

sensor images are considered. 
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(a) (b) 

Figure 6 Example of change detection problem in VHR optical images. True colour composition of QuickBird 
pansharpened images acquired in: a) October 2005, and b) July 2006. The area of interest is a sub-urban area located 
close to Trento (Italy). Changes are mainly associated to buildings (see white circles in the right image). 

 

TABLE 1 SUMMARY OF THE MOST WIDELY USED COMPARISON OPERATORS. fk IS THE CONSIDERED FEATURE AT TIME tk 

THAT CAN BE: I) A SINGLE SPECTRAL BAND 
b
kX ; II) A VECTOR OF M SPECTRAL BANDS 

1[ ,..., ]m
k kX X ; III) A VEGETATION 

INDEX VK; IV) A VECTOR OF FEATURES 
1[ ,..., ]m
k kP P  OBTAINED AFTER TRANSFORMATION; XD IS THE IMAGE AFTER 

COMPARISON. 
Technique Feature vector fk at the time tk Comparison operator 

Univariate image differencing b
k kf X  XD = f2 - f1 

Vegetation index differencing k kf V  XD = f2 - f1 

Regression b
k kf X  XD = f2 - f1 

Change vector analysis 1[ ,..., ]m
k k kf X X  XD = f2 - f1 

Transformation based (PCA, etc.) 1[ ,..., ]m
k k kf P P  XD = f2 - f1 

MAD 1[ ,..., ]m
k k kf X X  XD = aT f2 - b

T f1 

 

B Fusion of Multitemporal SAR images 

When dealing with SAR images the additive noise model is no longer valid. For active sensor images the 

commonly adopted noise model is multiplicative. The direct consequence of the noise model is that the difference 

operator becomes poorly effective. Let us consider two multilook intensity SAR images. It is possible to show 

that after subtraction the statistical distribution of the resulting image depends on both the relative change between 

the intensity values in the two images and a reference intensity value (i.e., the intensity at t1 or t2). This leads to a 

higher change-detection error for changes occurred in high-intensity regions of the image than in low-intensity 

regions. Although in the past the difference operator was used with SAR data [60], the aforementioned behaviour 
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is an undesired effect that renders the difference operator intrinsically not suited to the statistics of SAR images. 

To overcome this problem the ratio operator (Image Rationing) [1] was introduced in the SAR multitemporal 

image comparison at feature level literature. The ratio operator demonstrated to be more effective [2],[59],[60] 

because its distribution depends only on the relative change in the average intensity between the two dates and not 

on a reference intensity level [2],[59]. Moreover it is possible to prove that the distribution of the ratio image 

depends on the true change in the radar cross section. Thus changes are detected in the same manner both in high- 

and low-intensity regions. Moreover rationing allows to reduce common multiplicative error components (which 

are due to both multiplicative sensor calibration errors and to the multiplicative effects of the interaction of the 

coherent signal with the terrain geometry [2],[61]), as far as these components are the same for images acquired 

with the same geometry. In the literature, the ratio image is usually expressed in a logarithmic scale. With this 

operation the distribution of the classes of interest in the ratio image becomes more symmetrical and the residual 

multiplicative speckle noise can be transformed in an additive noise component [2],[10],[20],[60]-[62]. Thus the 

log-ratio operator is typically preferred when dealing with SAR images [2],[10],[20],[60]-[62]. Changes in SAR 

images can be associated to both increase and decrease of backscattering. The two contributions locate on the left 

and right side of the no-change class distribution, respectively. Sometimes there is no interest in distinguishing 

between the two contributions. To model them as a single change class, the normalized log-ratio can be computed. 

Another set of comparison operators widely used when performing fusion at feature level in SAR images, is 

the one based on the use of information theoretical similarity measures [63]. Despite they have been mainly 

employed for SAR data, they can be successfully applied to optical data as well [34]. In [15],[34] the Kullback–

Leibler (KL) divergence was used as change index. The divergence is a function of two probability densities 

characterizing a random variable that describes the image behaviours in the local neighbourhood of the analysed 

pixel. If the probability densities are similar (no change), the Kullback-Leibler divergence has a small value 

otherwise the value is high. The Kullback-Leibler divergence can be applied to the backscattering values or to 

higher order statistics (e.g., co-occurrence probability texture features). The KL divergence is not symmetric as it 

stands, but a symmetric version (i.e., the KL distance) may be defined by summing up the two non-symmetric 

divergences. In order to estimate the KL divergence/distance, the statistical distributions of the random variables 
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associated to the multitemporal images have to be known. In the case of Gaussian distributed variables, the KL 

distance assumes a closed form. If no assumption on the distribution can be done, a non-parametric estimation 

needs to be conducted which is computationally demanding. As an example [15] provides an approach to reduce 

the computational burden, where the shape of the local probability density functions is estimated by the 

Edgeworth expansion, which is based on the cumulants of the random variables. In the similarity measures family 

we find the Normalized Information Distance (NID) [115]. It represents the dominant similarity aspect between 

every two objects and it is defined as the length of the shortest binary program that is needed to transform the two 

objects into each other. This distance can be interpreted also as being proportional to the minimal amount of 

energy required to do the transformation from one image to the other. Since the similarity metric is based on the 

non-computable notion of Kolmogorov complexity, a practical analogue of the NID is based on real-world 

compressors: the Normalized Compression Distance (NCD) [115]. The NCD is a nonnegative number 

representing how different the two images are. Smaller NCD values represent no changes and vice versa. This 

complexity based measure captures full non–linear dependencies. The correlation coefficient can be used as 

similarity measure as well. The correlation captures the linear dependencies between images, both in the pixel 

based intensity as well as spatially. Several other statistical similarity measures have been employed for fusion at 

feature level such as: Mutual Information [64],[65] which quantifies the common information or the statistical 

independence between a couple of random variables (and its coherent extension to the use in polarimetric SAR 

data [66]); Variational Information introduced in [67], which quantifies the different information between the 

couple of random variables; and Mixed Information [68], which unifies the Mutual and Variational Information. 

In the latter case, the trade-off between the Mutual and Variational Information is reached according to a 

parameter  in the range [0,1]. Mixed information can be seen as a simple linear combination of the Mutual 

Information and the joint entropy as well [68]. The Mixed information results in better performance than the 

Mutual and Variational considered independently. Furthermore, it exhibits good results when fusing multi-

temporal or multi-sensor images which suffer from different radiometric conditions. Another example of joint use 

of more than one comparison operator can be found in [26]. The mentioned similarity measures rely on a sliding 
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window. Larger windows reduce the time consumption but decrease the sensibility to details. Thus a trade-off is 

required. 

More recently the multiscale/resolution concept has been introduced in the multitemporal image analysis. This 

need emerged because of the complexity of SAR data and because of the intrinsic multiresolution information 

available in the images acquired by the new generation high spatial resolution sensors. To properly model 

multiscale/resolution information different approaches have been used either before or after applying fusion at 

feature level according to the operators listed above. Among the others we recall the Wavelet decomposition [20]-

[22],[24]-[28], the Contourlet transform [30],[31], and the local similarity measures computed on varying 

windows size [15] or multiscale segments [33]. Figure 7 shows an example of a change detection problem in high 

resolution SAR images and of possible change indices. The multiresolution analysis had a step forward when very 

high spatial resolution images become available leading to the development of methods based on objects, 

 

 
(a) (b) 

 
(c) (d) (e) 

Figure 7 Example of fusion at feature level in multitemporal SAR images. Images acquired from the ERS-1 SAR 
sensor in (a) July 1995 and (b) October 1995. (c) ratio image, (d) log-ratio image, (e) KL distance computed on a 3x3 
sliding window. The area of interest is located in Saskatchewan province, Canada. Changes occurred between 
acquisition dates are associated to a forest fire. 
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primitives extraction and modelling [38]-[40] suitable for modelling the high level semantic information available 

in VHR images. As already mentioned in sec II.A, reasoning at a higher level of abstraction makes such 

approaches intrinsically suitable for multisensor analysis [42]-[44]. Figure 8 gives an example of a change 

detection problem in VHR SAR images and of possible change indices. Table 2 gives an overview of the most 

widely used operators when performing fusion at feature level with SAR multitemporal images. 

 

 
(a) (b) (c) 

 
(d) (e) 

Figure 8 Example of change detection problem in multitemporal VHR SAR images. Images acquired from the 
COSMOSkyMed constellation in (a) April 2009 and (b) September 2009. (c) Multitemporal false colour composition. 
(d) and (e) are the log-ratio images obtained at wavelet decomposition level 1 and 3, respectively (for further details 
on how wavelet decomposition was computed refer to [20]). The area of interest is located in L’Aquila, Italy. Changes 
occurred between acquisition dates are associated to buildings destroyed by the earthquake occurred in April 2009 
(yellow circles in the false colour image). COSMO-SkyMed Product – ©ASI – Agenzia Spaziale Italiana – (2009). All 
Rights Reserved 

 

Up to now, comparison/fusion techniques for single polarimetric SAR images have been presented. However 

polarimetric SAR data can be considered for multitemporal fusion as well. When dealing with polarimetric SAR 

the comparison operators listed above have been used after extracting specific features like: i) the backscattering 



16 
 

coefficient [70], ii) Cloude decomposition (or H- decomposition) [71], iii) Polarimetric signatures (i.e., a by-

product of polarimetry synthesis) [72] or the polar azimuthal polarimetric signature [73]. Due to the richer 

information of polarimetric data with respect to non polarimetric ones, additional specific comparison operators 

can be considered, e.g., difference of scattering matrix element products or correlation coefficients; polarimetric 

change indices based on the covariance matrix , Contrast Ratio (or Rayleigh quotient) and Ellipticity indices 

[75], the test of equality for two complex Wishart matrixes [76], the Bartlett test [75]. Among them the Wishart 

test in diagonal case appears to be the fastest, while returning satisfying results compared to the full case of the 

Wishart test. It has low sensitivity to noise, sensitivity to a broader range of changes and it is able to characterize 

the kind of changes. 

TABLE 2 SUMMARY OF THE MOST WIDELY USED COMPARISON OPERATORS. fk IS THE CONSIDERED FEATURE AND Xk IS THE 

SAR IMAGE AT TIME tk, p(.) IS THE PROBABILITY DENSITY. 

Technique 
Feature vector 
fk at the time tk

Comparison operator 

Image differencing fk = Xk XLR = f2 - f1 
Image rationing fk = Xk XR = f2 / f1 
Log-ratio fk = Xk XLR = log f2- log f1 

Similarity measures 

Kullback-
Leibler distance 

fk = Xk 
1

2 1 1
2

( )
( |  ) log ( )

( )
p f

KL f f p f
p f
      

Mutual 
information 

fk = Xk 
2 1

1 2
2 1 2 1

1 2, 

( , )
( , ) ( , )log

( ) ( )X X

p f f
I f f p f f

p f p f
    

  

Variational 
information 

fk = Xk 
2 1

2
1 2

1 2 1 2
1 2, 

( , )
( , ) ( , )log

( ) ( )f f

p f f
VI f f p f f

p f p f

 
  

 
  

 
 
C Multitemporal Information Extraction 

Fusion at feature level results in features where change information is highlighted. In order to effectively 

extract such information further steps are required. For sake of completeness we provide a brief summary of 

methods for multitemporal information extraction after fusion. Depending on the technique used to fuse 

multitemporal images at feature level, changes can be identified in different positions of the corresponding change 

index feature space. Methods for information extraction available in the literature can be classified into: i) 

empirical methods; ii) methods based on the Bayesian decision theory; iii) methods based on the optimization of 
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an objective function; iv) methods based on fuzzy theory; v) methods based on the use of spatial-context 

information. 

In empirical methods, changes are identified by thresholding a change index. The threshold identification can 

be performed according to empirical strategies [77] that often employ manual trial-and-error procedures, which 

significantly affect the reliability and accuracy of the final change-detection map. The basic assumption when 

applying empirical strategies is that changed pixels are few and show values significantly different from the 

unchanged ones. Thus changed pixels are those far from the mode of the density function associated to the change 

index. A simple strategy consists in fixing the decision threshold as n +, being  and  the mode and the 

standard deviation of the considered change index, respectively, and n is a real number derived by a trial-and-

error procedure. In this context, the selection of the parameter n strongly depends on the end-user’s subjective 

criteria, which may lead to unreliable change-detection results. In addition, such a selection usually requires 

several trials and hence a non-negligible computation time. An alternative strategy, which is typically adopted in 

SAR image processing, is to label as changed pixels the ones that modified their backscattering more than dB x , 

where x is a real number depending on the considered scene. The value of x is fixed according to the kind of 

change and the expected variation in order to obtain a desired probability of correct detection (which is the 

probability to be over the threshold if a change occurred) or false alarm (which is the probability to be over the 

threshold if no change occurred). It has been shown that the value of x can be analytically defined as a function of 

the true change in the radar backscattering and of the equivalent number of looks [59],[60] once detection or false 

alarm probabilities are fixed. A similar approach is presented [61]; it identifies the decision threshold on the basis 

of predefined values on the cumulative histogram of the change index. It is worth noting that these approaches are 

not fully automatic and objective from an application point of view, as they depend on the user sensibility in 

constraint definition with respect to the considered kind of change. These properties may represent a critical 

limitation. 

An interesting alternative consists in formulating the change-detection problem in the framework of the 

Bayesian decision theory in order to optimize the separation between changed and unchanged pixels in an 

unsupervised way. The main problem to be solved for the application of the Bayes decision theory consists in the 
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estimation of the statistical terms associated to the classes of change and no-change (i.e., their prior probabilities 

and probability density functions) [2],[46] without any ground-truth information (i.e., without any training set). 

The starting point of methodologies based on the Bayesian decision theory is the hypothesis that the statistical 

distributions of pixels in the change index can be modelled as a mixture of densities. Mixture components are 

associated to changed and unchanged pixels. In the literature, explicit estimation of class statistical parameters has 

been addressed with the Expectation-Maximization (EM) algorithm which is an iterative approach to maximum-

likelihood (ML) estimation for incomplete data problems [78]. The iterative equations that characterize the EM 

algorithm are different according to the statistical model adopted for the distributions of the classes. The most 

suitable statistical model varies according to the kind of data. If optical passive sensor data are considered the 

most common statistical models are: i) Gaussian [7],[79]-[81]; ii) mixture of Gaussians [55]; iii) Rayleigh (for the 

magnitude of unchanged samples computed according to CVA) [47]; vi) Rice (for the magnitude of changed 

samples computed according to CVA) [47]; v) Uniform (for the direction of unchanged samples computed 

according to CVA) [47]; vi) Non-uniform (for the direction of changed samples computed according to CVA) 

[47]. If SAR images are considered, it has been shown that the Generalized Gaussian [2],[82], Weibull or 

Nakagami-Gamma [83],[84] distributions allow to better handle the complexity of the class distributions. The 

iterative equations needed for performing EM parameter optimization under the Gaussian, mixture of Gaussian 

and Generalized Gaussian class models can be found in [2],[55] and [36], respectively, whereas more details on 

the validity of the Rayleigh and Rice models can be found in [47]. 

Once the statistical parameters are computed, pixel-based or context-based decision rules from the pattern 

recognition literature can be applied. The review of such methods is out of the scope of the present manuscript. 

However, we recall the most widely used approaches in the context of change detection. Concerning pixel-based 

methods, we can mention: i) Bayes rule for minimum error [2],[36],[47],[80]; ii) Bayes rule for minimum cost 

[80]; iii) Neyman-Pearson criterion [80]. The Bayes rule for minimum cost and the Neyman-Pearson criterion 

allow considering the costs of false and/or missed alarms in the decision process. Bayesian decision theory can be 

used also in multisensor change detection [109]. Here fusion is carried out according to the consensus theory by 

integrating the estimates of statistical terms over different sensors. In the fusion step a weight is associated to each 
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source according to its expected reliability. Within the Bayesian decision theory framework different techniques 

for reducing the effects of the residual registration noise between multitemporal images have been integrated [48], 

[49],[85]. 

Another set of methods is based on the optimization of objective (cost) functions. The fact that, generally, the 

change index is one-dimensional makes this process easy. The choice of the cost function plays a fundamental 

role in the accuracy of the results. In the change detection literature, several objective functions have been 

employed based on: i) discriminant analysis and inter- and intra-class measures [86]; ii) Bayes decision rule for 

minimum error [87]; iii) distribution free fuzzy entropy measure [88]. The optimization of objective functions 

leads to an implicit estimation of the class statistical parameters [87],[89]-[96]. According to the kind of data, 

different assumptions on the statistical distribution of classes can be made. As an example, the Kittler and 

Illingworth criterion has been used under both the Gaussian [89] and the Generalized Gaussian [2],[82] 

assumption for the statistical distributions of classes. Also methods based on Machine Learning and clustering 

that minimize a cost function can be listed in this category. In the literature examples can be found based on 

Support Vector Machine [90],[91], clustering and kernel-based clustering [65],[92],[93], neural networks 

[94],[98]. 

The use of fuzzy theory is another possibility. These kinds of techniques rely on the assumption that some 

ambiguity exists that arises from the overlapping nature of classes or image properties [17],[18]. The ambiguity of 

an image can be expressed in terms of radiometry (e.g., fuzzy entropy, hybrid entropy, correlation, etc.) or 

geometry (e.g., compactness, high and width, length and breadth, index of area coverage, degree of adjacency, 

etc.). The decision threshold is selected as the value where the membership function shows a global minimum or 

maximum depending on the selected ambiguity measure [17],[18]. Fuzzy clustering approaches belongs to this 

group as well [26]. 

Some approaches involve spatial-context information in the decision process. This is justified by the 

reasonable assumption that changes are large if compared with the spatial resolution of the sensor. Thus a pixel is 

likely to be surrounded by pixels of the same class. The use of interpixel dependence may yield more reliable and 

accurate change-detection results. A fully automatic approach to the unsupervised analysis of the change index, 
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which exploits the spatial contextual information to reduce the effect of noise in the detection procedure, has been 

proposed in [2],[36]. The solution is developed in the context of Bayesian decision theory, where the spatial 

context of each pixel is modelled by the use of Markov Random Fields. Another effective technique capable to 

consider the spatial-contextual information is based on adaptive parcels, i.e., small homogeneous regions shared 

by both original images [29],[97]. The adaptive nature of parcels allows spatial-contextual information to be 

exploited so that noise may be reduced without damaging the boundaries of the changed areas. Spatial correlation 

between neighbouring pixels has been modelled by using Hopfield neural network [94],[98] as well. This solution 

is fully automatic and distribution free. Spatial-context features have been used in [49], [99]-[102] with the 

explicit objective of compensating for co-registration problems. Table 3 summarizes the main land-cover 

transitions detection approaches based on fusion at decision level. 

TABLE 3 SUMMARY OF THE MAIN TECHNIQUES FOR LAND-COVER TRANSITIONS DETECTION PERFORMED AT DECISION LEVEL (THE TABLE 

IS NOT EXHAUSTIVE). 

Change Detection Technique Detection Algorithm Reference Kind of Data 

Change vector Analysis (CVA) 
Compressed CVA (C2VA) 
Image Differencing (ID) 
Vegetation Index Differencing (VID) 
Principal Component Analysis (PCA) 

Empirical thresholding 

Fung (1987) 
Singh (1989) 
Fung et al. (1990) 
Muchoney (1994) 
Townshend et al. (1995) 

Multispectral 

Empirical cost function 
minimization 

Kittler et al. (1986) 
Bruzzone et al. (2000, 2002) 
Melgani et al. (2002) 
Bovolo et al. (2008, 2012) 
Celik (2009) 
Muñoz-Marí et al. (2010) 
Chen et al. (2011) 
Volpi et al. (2012) 

Fuzzy thresholding 
Pal et al. (2000, 2001) 
Di Zenzo (1998) 

Context-based approaches 

Solberg et al. (1996) 
Bruzzone et al. (2000) 
Ghosh et al. (2007, 2013) 
Huo et al. (2014) 
Hao et al. (2014)

Multiscale/Hierarchical 

Bovolo et al. (2005) 
Inglada et al. (2007) 
Dalla Mura et al. (2008) 
Bovolo (2009) 
Bazi et al. (2010) 
Moser et al. (2011) 
Falco et al. (2013) 
Bruzzone et al. (2013) 
Liu et al. (2014, 2015a, 2015b) 

Reduction registration noise 
Bruzzone et al. (1997, 2003) 
Marchesi et al. (2010) 

Image (Log-)Rationing (IR) Empirical thresholding 
Singh (1989) 
Rignot et al. (1993) 
Cihlar et al. (1992) 

SAR 
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Change Detection Technique Detection Algorithm Reference Kind of Data 

Thresholding explicitly or implicitly 
based on the Bayes decision theory 

Bazi et al. (2004, 2005, 2006) 
Moser et al. (2006) 

Fuzzy 
Pal et al. (2000) 
Gong et al. (2012) 

Wavelet/Contourlet-based 
multiresolution approach 

Bovolo et al.(2005) 
Celik et al. (2009, 2011) 
Celik (2010) 
Li et al. (2012) 
Ma et al. (2012) 
Cui et al. (2012) 

Context-based approaches 
Bazi et al. (2005) 
Bovolo et al. (2008) 
Moser et al. (2009) 

Multiscale 

Gamba et al. (2006) 
Dell’Acqua et al. (2006) 
Bovolo et al. (2005, 2013) 
Inglada et al. (2007) 
Bazi et al. (2010) 

Multivariate Alteration Detection Nielsen et al. (1998) 

Kullback Leibler distance (KLD) 
Normalized information distance (NID) 
Mutual Information (I) 
Variational Information (VI) 
Mixed Information (MI) 

Single scale 

Meila (2003) 
Cebrian et al. (2007) 
Chatelain et al. (2007) 
Gueguen et al. (2009, 2011) 
Erten et al. (2012) Multispectral and SAR 

Multiscale 
Inglada et al. (2007) 
Celik (2010) 

Multimodal Datcu et al. 

Correlation coefficient 
Contrast Ratio 
Ellipticity 

Empirical thresholding 
Dierking et al (2000, 2002) 
Kersten et al. (2005) 

Polarimetric SAR data 
Test Statistics Conradsen et al. (2003) 
Context based Molinier et al. (2007) 

Feature and area based techniques Thresholding and refinement 
Dell’Acqua et al. (2004, 2006) 
Della Ventura et al. (1990) 

Multispectral and SAR 

Multivariate Alteration Detection (MAD) and modifications 

Nielsen et al. (1998) 
Nielsen (2001, 2007) 
Liao et al. (2005) 
Marpu et al. (2011) 

Multispectral, SAR 
and multisensor 

 

3 FUSION AT DECISION LEVEL: MULTITEMPORAL IMAGE CLASSIFICATION 

As opposed to feature-based multitemporal information fusion for change detection, a set of multitemporal 

image fusion techniques can be found that aims at multitemporal analysis by fusion at decision level. Methods 

belonging to this category mainly rely on supervised or semi/partially-supervised/unsupervised classification. The 

terms partially supervised classification and partially unsupervised classification have been used in the literature 

for defining change detection problems with bi-temporal images where reference data (and thus a training set) are 

available only for one of the two images considered. The two terms refer to the same concept considered from the 

initial perspective either of supervised or unsupervised classification. It is worth noting that most recently similar 

problems in the context of multitemporal classification have been defined as domain adaptation in the framework 
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of transfer learning. The term semi-supervised refers in general to the use of labelled and unlabelled data in the 

learning phase of a classifier. Partially supervised and unsupervised methods (as well as domain adaptation 

methods) exploit semi-supervised techniques implemented across two domains (associated with the two images). 

After this clarification, for avoiding confusion, in this paper we refer to all these approaches with the terms which 

they have been presented in the literature. Such kind of approaches do not only highlight the changes, they 

explicitly identify the pair of classes (i.e., land-cover transition) associated with each detected change. Note that 

they can be successfully applied to bitemporal images both when there are changes and when there are not. 

However in the following we concentrate our attention to their use in the context of change detection applications. 

The (semi)supervised nature of these kind of approaches reduces the sensibility to radiometric differences. The 

use of fully or partially supervised methods depends on the availability of ground truth information. On the one 

hand, if multitemporal ground truth information is available supervised techniques can be applied. This 

information is used in the learning phase of supervised data classification for modelling the kind of land-cover 

transitions. On the other hand, if ground truth is available for one or some of the images in the multitemporal 

sequence, partially-supervised techniques should be considered. If no ground truth is available, unsupervised 

clustering techniques should be used. 

Three main general approaches to fusion at decision level can be found in the literature: Post-Classification 

Comparison [1], Supervised Direct Multidate Classification [1],[110] and Compound Classification [111]-[114]. 

In the literature many different classifiers have been used in the context of the analysis of temporal series of 

remote sensing images. Among the others, we recall the Maximum Likelihood classifier [112], Neural Networks 

[116], Fuzzy Classifiers [116], and Support Vector Machines [117],[118], which are either the most widely used 

or the most effective ones. The reader is referred to the literature for more details on the behaviour and 

mathematical details of each single classifier.  

The use of supervised classification is in general more accurate than unsupervised approaches. Nevertheless, it 

is less appealing in operational applications. This is due to the difficulties in collecting proper ground-truth 

information (necessary for supervised techniques), which is a complex, time consuming and expensive process (in 

many cases this is not consistent with the application constraints). It becomes even more complex since there is a 
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need of multitemporal information. Semi-supervised approaches represent a trade-off between the two above-

mentioned conditions. It is worth noting that all the techniques based on classifiers cited in this section are 

intrinsically suitable to be used with different kind of data and also with multisensor, multisource and 

multiresolution information. 

The post-classification comparison (PCC) (also referred to as delta classification [1]) is the simplest technique 

among fusion at decision level approaches. It performs change detection by comparing the classification maps 

obtained by classifying independently the two images considered. For each change the land cover transition is 

obtained in an explicit way. The main advantage of delta classification lies in the fact that multitemporal images 

are classified independently, thereby minimizing the problem of radiometric calibration. Although PCC has been 

extensively used in several applications, its performance strongly depends on the classification accuracies of the 

classifier applied to each single image. After multitemporal fusion the accuracy is close to the product of the 

accuracies yielded by the independent classifiers [1],[113], making the approach often unsatisfactory [119]. This 

is a direct result of the fact that PCC does not take into account the temporal correlation. However it has been 

widely employed in the literature both at pixel and region level [127]-[130]. Attempts to increase PCC accuracy 

have been done by using more than two images in the fusion step [131]. 

Supervised direct multidate classification (DMC) [1],[113],[132], unlike PCC, takes into account the 

dependence existing between two images of the same area. The main idea of such a technique is to characterize 

pixels by a vector obtained by stacking the feature vectors related to the images acquired at the two different 

times. Then the identification of the land-cover transitions is carried out by considering each transition as a single 

class and by training a classifier to recognize such transitions. It is worth noting that a complex constraint to 

satisfy for using this technique is to have a training set composed of training pixels related to the same points on 

the ground at the two times. In addition, training pixels should represent accurately the proportions of all the 

transitions in the whole area of interest. This represents a serious drawback as, in real applications, it is difficult to 

obtain training sets with such characteristics. In [121] Schowengerdt remarked that, since spectral and temporal 

features have equal status in the combined data set, they cannot be easily separated in the pattern recognition 
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process. As a consequence, class labelling may be difficult if relatively simple classification algorithms are 

considered. In [132] DMC has been adapted to the use in VHR images. 

A more realistic approach to fusion at decision level is compound classification (CC) [113]. Similarly to the 

DMC, also in this case the objective is to perform the classification of pixels of the two images according to the 

maximization of the posterior joint probability of classes. Conditional probabilities of classes can be estimated 

according to different techniques and under different assumption on their statistical distribution. On the one hand, 

with respect to the PCC, the CC technique allows the temporal correlation between images to be considered in the 

change-detection process. On the other hand, with respect to the DMC method, the CC technique allows the 

constraints related to the training sets to be relaxed [113]. In particular, training pixels should not necessarily be 

related to the same area on the ground [113]-[114]. 

In real problems it may happen that, given a series of multi-temporal images, a ground truth is not available for 

all the items of the series. In such realistic cases, the aforementioned supervised approaches cannot be employed. 

In [122], an ensemble of non-parametric multitemporal partially-supervised classifiers was defined and integrated 

in the context of a multiple classifier system. Each multitemporal classifier was developed in the framework of the 

compound classification decision rule. In [114], a partially supervised methodology was proposed able to update 

the parameters of an already trained parametric maximum-likelihood (ML) classifier whenever a new image 

lacking the corresponding ground truth has to be analysed. The updating is performed by means of the EM 

algorithm [78] that allows tuning the parameters of the trained ML classifier on the basis of the distribution of the 

new image. In this way, it is possible to classify multi-temporal data of a given area (and hence to derive land-

covers transition maps) without relying on a multi-temporal ground truth. These methods have been recently 

referred to as Domain Adaptation (DA) methods. In [123], a partially unsupervised technique based on Markov 

Random Fields is proposed for the identification of the only land cover transitions of interest for the end-user, by 

exploiting training samples belonging exclusively to the land covers involved in the specific kind of changes to be 

mapped. In [124], an advanced context-sensitive classification technique that exploits a temporal series of remote 

sensing images for a regular updating of land-cover maps is proposed. The authors introduced a classifier which is 
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based on an iterative partially supervised algorithm that jointly estimates the class-conditional densities and the 

prior model for the class labels on the image to be classified by taking into account spatial-context information. 

All the aforementioned supervised and partially (semi) supervised methods based on classification are 

intrinsically suitable to process also multisensor/multisource data. In fact, if proper distribution-free non-

parametric classifiers are used for the analysis of the images, data acquired from different sensors (e.g., 

multispectral images and SAR images) can be processed to produce the map of land-cover transitions. Under the 

assumption that the considered images are re-sampled at the same geometrical resolution, it is also possible to 

employ (semi)supervised approaches with different sensors at the two dates: in fact, the comparison process is 

carried out at a classification-map level. This property is very important as it allows: i) to produce land-cover 

transition maps related to large temporal differences (large temporal differences involve the availability of data 

acquired by different sensors of different generation); ii) to obtain land-cover transitions maps also when data 

acquired from a specific sensor at the first date are not available at the second date (e.g., multispectral images at 

the second date might be not available depending on atmospheric conditions. In these cases, SAR images could be 

compared with multispectral images). 

In [126] the authors describe both neuro-fuzzy and statistical approaches to the exploitation of the contextual 

information and the classification, and different schemes for the multisensor fusion. The presented technique 

appropriately fuses the information of active and passive sensors and results in a good change detection precision 

and in the best possible classification accuracy. 

Due to the complexity in constructing ground truth information for the training of classifiers, fusion at decision 

level methods have been less used. However recently a novel interest from the scientific community was devoted 

to these methods. This is because of the methodological developments in the context of domain adaptation (DA) 

and active learning (AL) context. As mentioned above, DA approaches allow to take advantage of the ground 

truth information available for one acquisition (i.e., the source domain) and to adapt this information to images for 

which ground truth is not available (i.e., the target domain). The adaptation mechanism can be significantly 

improved by the use of AL approaches that guarantee a minimum amount of new labelled data for the target 

domain. Thus they handle in a better way the possible significant differences between statistical distributions of 
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the source and target domains. Examples of such approaches to multitemporal image fusion can be found in [133]-

[135] 

TABLE 4 SUMMARY OF THE MAIN TECHNIQUES FOR MULTICLASS CHANGE DETECTION (THE TABLE IS NOT EXHAUSTIVE). 

Multiclass Change Detection Technique Reference Kind of Data

Supervised Post-classification Comparison 

Howarth et al. (1981) 
Singh(1989)  
Hall et al. (1991) 
Bruzzone et al. (1997) 
Smits et al. (1999) 
Serra et al. (2003) 
Pacifici et al. (2007) 
Ling et al. (2011) 
Kempeneers et al. (2012) 

Multispectral 
SAR 
Multisensor 

Supervised Direct-Multidate Classification 

Schowengerdt (1983) 
Singh (1989) 
Hall et al. (1991) 
Bruzzone et al. (1997) 
Volpi et al. (2013) 

Compound Classification and Domain adaptation 

Bruzzone et al. (1997) 
Bruzzone et al. (1999) 
Fernández Prieto et al. (2001) 
Cossu et al. (2005) 
Serpico et al. 
Demir et al. (2012, 2013) 

Unsupervised approaches 
Byrne et al. (1980) 
Häme et al. (1998) 
Bovolo et al. (2007) 

 

4 CONCLUSION 

This paper has addressed the data fusion problem in the context of multitemporal remote sensing images. As 

the topic is wide and in an extremely rapid evolution [136]-[145], it has not been possible to present an exhaustive 

analysis. Accordingly, we focused the multitemporal data fusion from a change detection perspective. We 

provided an overview of the main methods and approaches available in the literature, including the standard (and 

widely used) methods and the most recent developments. From the fusion perspective, multitemporal data 

analysis techniques can be divided into two main categories: i) fusion at feature level; and ii) fusion at decision 

level. The former includes mostly unsupervised methods that perform change detection after the computation of a 

change index. Change indices result from a comparison/fusion at feature level of multitemporal images and aim at 

highlighting the presence/absence of changes. Several comparison/fusion techniques and analysis algorithms exist 
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depending on the kind of images considered (e.g., SAR or optical images). The latter mainly includes methods 

based on multitemporal classification. Approaches in this group are intrinsically suitable for both SAR and optical 

images, and can implicitly process also multisensor images. Among them we can identify methods that require 

exhaustive multitemporal ground truth information and methods that can work with limited/partial reference data.  

As a final remark, we point out that it is not possible to identify a technique better than the others. All the 

different approaches, as discussed in the paper, have advantages and disadvantages. Thus the choice of the method 

to use at operational level strongly depends on the considered application and the end-users requirements. 
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